每日一道leetcode

216. 组合总和 III - 力扣(LeetCode)

题目

找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:

  • 只使用数字1到9
  • 每个数字 最多使用一次 

返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。

示例 1:

输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。

示例 2:

输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。

示例 3:

输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。

提示:

  • 2 <= k <= 9
  • 1 <= n <= 60

思路

  1. 不断地进行递归,每次递归计算从x(x取决于递归层数)到9,每层都做一次运算,然后将计算结果和相关加数插入数组:
    1. 如果低于n,继续往后计算。
    2. 如果等于n且到达最后一层,将结果数组插入答案数组,结束本层计算。
    3. 如果大于n或未到最后一层时已经等于n,也直接结束本层递归。

代码实现

class Solution {
public:
    vector<vector<int>> ans;
    void cal_sum(vector<int> &tmp, int sum, int k, int round, int start, int n) {
        sum += start-1;
        for(int i = start; i <= 9; i++) {
            sum++;
            tmp.push_back(i);
            if(sum > n) {
                tmp.pop_back();
                return;
            }
            else if(sum == n && round != k) {
                tmp.pop_back();
                return;
            }
            else if(sum == n && round == k) {
                ans.push_back(tmp);
                tmp.pop_back();
                return;
            }
            cal_sum(tmp, sum, k, round+1, i+1, n);
            tmp.pop_back();
        }
    }
    vector<vector<int>> combinationSum3(int k, int n) {
        vector<int> tmp = {};
        cal_sum(tmp, 0, k, 1, 1, n);
        return ans;
    }
};

复杂度分析

  • 时间复杂度:每个组合的判断需要O(k)的深度,组合数有\binom{9}{k}个,所以总的时间复杂度为O(\binom{9}{k}*k)。
  • 空间复杂度:递归的最大深度为k,加数数组的长度为k,不考虑结果数组的情况下,空间复杂度为O(k)。

官方题解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值