题目
找出所有相加之和为 n
的 k
个数的组合,且满足下列条件:
- 只使用数字1到9
- 每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。
示例 1:
输入: k = 3, n = 7 输出: [[1,2,4]] 解释: 1 + 2 + 4 = 7 没有其他符合的组合了。
示例 2:
输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]] 解释: 1 + 2 + 6 = 9 1 + 3 + 5 = 9 2 + 3 + 4 = 9 没有其他符合的组合了。
示例 3:
输入: k = 4, n = 1 输出: [] 解释: 不存在有效的组合。 在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。
提示:
2 <= k <= 9
1 <= n <= 60
思路
- 不断地进行递归,每次递归计算从x(x取决于递归层数)到9,每层都做一次运算,然后将计算结果和相关加数插入数组:
- 如果低于n,继续往后计算。
- 如果等于n且到达最后一层,将结果数组插入答案数组,结束本层计算。
- 如果大于n或未到最后一层时已经等于n,也直接结束本层递归。
代码实现
class Solution {
public:
vector<vector<int>> ans;
void cal_sum(vector<int> &tmp, int sum, int k, int round, int start, int n) {
sum += start-1;
for(int i = start; i <= 9; i++) {
sum++;
tmp.push_back(i);
if(sum > n) {
tmp.pop_back();
return;
}
else if(sum == n && round != k) {
tmp.pop_back();
return;
}
else if(sum == n && round == k) {
ans.push_back(tmp);
tmp.pop_back();
return;
}
cal_sum(tmp, sum, k, round+1, i+1, n);
tmp.pop_back();
}
}
vector<vector<int>> combinationSum3(int k, int n) {
vector<int> tmp = {};
cal_sum(tmp, 0, k, 1, 1, n);
return ans;
}
};
复杂度分析
- 时间复杂度:每个组合的判断需要O(k)的深度,组合数有
个,所以总的时间复杂度为O(
*k)。
- 空间复杂度:递归的最大深度为k,加数数组的长度为k,不考虑结果数组的情况下,空间复杂度为O(k)。