题目
给你一个 非空 整数数组 nums
,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。
示例 1 :
输入:nums = [2,2,1]
输出:1
示例 2 :
输入:nums = [4,1,2,1,2]
输出:4
示例 3 :
输入:nums = [1]
输出:1
提示:
1 <= nums.length <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
- 除了某个元素只出现一次以外,其余每个元素均出现两次。
思路
- 利用异或运算符的特性,相同元素做异或会抵消为0,若0与任何数做异或都会变成那个数。
- 所以定义一个循环让每个数之间都做一次异或即可。
代码实现
class Solution {
public:
int singleNumber(vector<int>& nums) {
int ans = nums[0];
for(int i = 1; i < nums.size(); ++i) ans ^= nums[i];
return ans;
}
};
复杂度分析
- 时间复杂度:O(n)。
- 空间复杂度:O(1)。
知识积累
- 按位异或运算:相同取0,不同取1。
- 这里稍微想体验一下超过100%人的时间复杂度和空间复杂度,所以想了想优化的地方。
- i++和++i
- i++:先赋值,再自增;
- ++i:先自增,再赋值。
- 从逻辑上他们两个的流程只是相反了,但是实际上两者的效率开销是有区别的。
- 因为i++要先赋值,其类实现需要将当前值保存到临时变量中,再自增,最后返回原先的临时变量,这样就需要调用一/两次拷贝构造函数和析构函数(原对象->临时对象(,临时对象->赋值对象))。
- 而++i,不用生成临时变量,所以直接通过引用的方式返回,效率更高。
- 因为他们逻辑特性的区别,用法上的也有一定的不同,++i可以作为左值,而i++不行,因为++i最后还是原来的对象,而i++的对象有两个,一个是赋值的临时对象,一个是自增后的i(具体底层是怎么设计的我就没看了,只看了效率差别在哪,有空的话再研究)。