1318. 或运算的最小翻转次数 - 力扣(LeetCode)
题目
给你三个正整数 a
、b
和 c
。
你可以对 a
和 b
的二进制表示进行位翻转操作,返回能够使按位或运算 a
OR b
== c
成立的最小翻转次数。
「位翻转操作」是指将一个数的二进制表示任何单个位上的 1 变成 0 或者 0 变成 1 。
示例 1:
输入:a = 2, b = 6, c = 5
输出:3
解释:翻转后 a = 1 , b = 4 , c = 5 使得
a OR b == c
示例 2:
输入:a = 4, b = 2, c = 7
输出:1
示例 3:
输入:a = 1, b = 2, c = 3
输出:0
提示:
1 <= a <= 10^9
1 <= b <= 10^9
1 <= c <= 10^9
思路
- 首先基础是观察每一位上面的1的情况:
- 如果c[i]为0,那么a[i]和b[i]只要有1都要翻转。
- 如果c[i]不为0:
- 如果a[i], b[i]中至少有一个1,那么就不用操作;
- 如果没有1,那么就随机一个发生翻转。
- 然后就是怎么查,直接每次和1做按位与运算提取最低位的值,处理完后统一右移,直到三个数都变为0为止。
代码实现
class Solution {
public:
int minFlips(int a, int b, int c) {
int cnt = 0, ca, cb, cc;
while(a>0 || b>0 || c>0) {
ca = 1 & a;
cb = 1 & b;
cc = 1 & c;
if(cc == 0) cnt += ca+cb;
else {
cnt += (ca+cb < 1) ? 1 : 0;
}
a = a >> 1;
b = b >> 1;
c = c >> 1;
}
return cnt;
}
};
复杂度分析
- 时间复杂度:设最大数字为C,因为右移运算相当于除以2操作,所以至多循环logC轮,所以时间复杂度是O(logC)的。
- 空间复杂度:O(1)。