题目
给定一个整数数组 temperatures
,表示每天的温度,返回一个数组 answer
,其中 answer[i]
是指对于第 i
天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0
来代替。
示例 1:
输入:
temperatures
= [73,74,75,71,69,72,76,73]
输出: [1,1,4,2,1,1,0,0]
示例 2:
输入: temperatures = [30,40,50,60]
输出: [1,1,1,0]
示例 3:
输入: temperatures = [30,60,90]
输出: [1,1,0]
提示:
1 <= temperatures.length <= 105
30 <= temperatures[i] <= 100
思路
- 首先维护一个下界指针,然后维护一个单调栈,每次有更小的温度就加入栈中。
- 如果遇到一个大的就逐渐弹栈,直到弹到大于等于它本身的数或到达下界指针时弹栈停止。
- 反复执行直到最后一个数也入栈了。
- 最后栈中还有元素也无妨,因为都弹不出来,这部分在结果数组初始化时已经全部完成置0了。
代码实现
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& temperatures) {
vector<int> tem_stack, ans;
int start = 0, end, cnt = 1;
for(int i = 0; i < temperatures.size(); ++i) ans.push_back(0);
for(int i = 0; i < temperatures.size(); ++i) {
// 入栈的标准:小于或等于
if(!tem_stack.empty() && temperatures[i] > tem_stack.back()) {
end = i - 1; // 从当前点开始往回查
while(end >= start && temperatures[i] > tem_stack.back()) {
tem_stack.pop_back();
// 不断记录天数,找到当前栈顶元素对应的那一天插入步数
while(ans[end] != 0) {
--end;
++cnt;
}
ans[end--] = cnt++;
}
// 每次算完一个新的较高temperature,需要重置
cnt = 1;
if(end < start) start = i; // 如果当前单调栈空了,说明前面的天数都已经更新完了,那么扫前缀的规模应该减小
}
tem_stack.push_back(temperatures[i]);
}
return ans;
}
};
复杂度分析
- 时间复杂度:外循环为O(n),内循环可能每次都要扫将近一整张表,所以最差时间复杂度为O(n^2)。
- 空间复杂度:O(n)——最大的空间复杂度为结果数组,过程数组在最坏情况下也是O(n)的。
官方题解
- 官解有两种方法:
- 第一种是打表法:因为温度范围为30-100,所以维护两个数组,一个结果数组,一个存储30-100每个温度所在的最小下标。然后反向遍历,每次遍历搜索temperatures[i]+1到100之间的大于i的最小下标,因此其时间复杂度最坏为O(70n)(70为温度下标数组长度),空间复杂度为O(max(n, 70))。
- 第二种是单调栈的方法:这个方法其实和我的类似,但是方法确实更灵活了,单调栈的数据格式可以变成元组,那么就可以同时存储温度和下标了,那么每次弹栈就可以直接轻松定位而不需要去扫表了,那么时间复杂度可以直接降到O(n),即每个元素仅发生一次入栈和出栈操作。(只能说还得是人外有人,我想到了要做指针怎么没想到存元组呢qwq)。
- 新记录一个数据结构(虽然是我看错了Java的代码,但是C++也有实现):deque——双向队列,这个数据结构包含了queue、stack、vector的操作函数,是一种功能非常强大的数据结构,不够要想实现stack,vector也可以替代。