题目
表: Signups
+----------------+----------+
| Column Name | Type |
+----------------+----------+
| user_id | int |
| time_stamp | datetime |
+----------------+----------+
User_id是该表的主键。
每一行都包含ID为user_id的用户的注册时间信息。
表: Confirmations
+----------------+----------+
| Column Name | Type |
+----------------+----------+
| user_id | int |
| time_stamp | datetime |
| action | ENUM |
+----------------+----------+
(user_id, time_stamp)是该表的主键。
user_id是一个引用到注册表的外键。
action是类型为('confirmed', 'timeout')的ENUM
该表的每一行都表示ID为user_id的用户在time_stamp请求了一条确认消息,该确认消息要么被确认('confirmed'),要么被过期('timeout')。
用户的 确认率 是 'confirmed'
消息的数量除以请求的确认消息的总数。没有请求任何确认消息的用户的确认率为 0
。确认率四舍五入到 小数点后两位 。
编写一个SQL查询来查找每个用户的 确认率 。
以 任意顺序 返回结果表。
查询结果格式如下所示。
示例1:
输入:
Signups 表:
+---------+---------------------+
| user_id | time_stamp |
+---------+---------------------+
| 3 | 2020-03-21 10:16:13 |
| 7 | 2020-01-04 13:57:59 |
| 2 | 2020-07-29 23:09:44 |
| 6 | 2020-12-09 10:39:37 |
+---------+---------------------+
Confirmations 表:
+---------+---------------------+-----------+
| user_id | time_stamp | action |
+---------+---------------------+-----------+
| 3 | 2021-01-06 03:30:46 | timeout |
| 3 | 2021-07-14 14:00:00 | timeout |
| 7 | 2021-06-12 11:57:29 | confirmed |
| 7 | 2021-06-13 12:58:28 | confirmed |
| 7 | 2021-06-14 13:59:27 | confirmed |
| 2 | 2021-01-22 00:00:00 | confirmed |
| 2 | 2021-02-28 23:59:59 | timeout |
+---------+---------------------+-----------+
输出:
+---------+-------------------+
| user_id | confirmation_rate |
+---------+-------------------+
| 6 | 0.00 |
| 3 | 0.00 |
| 7 | 1.00 |
| 2 | 0.50 |
+---------+-------------------+
解释:
用户 6 没有请求任何确认消息。确认率为 0。
用户 3 进行了 2 次请求,都超时了。确认率为 0。
用户 7 提出了 3 个请求,所有请求都得到了确认。确认率为 1。
用户 2 做了 2 个请求,其中一个被确认,另一个超时。确认率为 1 / 2 = 0.5。
思路
- 先以Signups表为左表左连接Confirmations表,连接键为user_id,以正确展示所有注册用户情况。
- 将连接后的表以user_id做group by然后提取user_id以及计算confirmed数/请求数的比例(缺省补0,保留两位小数)。
代码实现
# Write your MySQL query statement below
select s.user_id, round(ifnull(count(if(c.action="confirmed", 1, null))/count(c.action), 0), 2) as confirmation_rate
from Signups as s left join Confirmations as c
on s.user_id = c.user_id
group by s.user_id
知识积累
- 带条件的统计:count(if(condition, 为真的处理,为假的处理))——因为外层是做count,只有为null才不会统计,如果是sum填0即可。
题解
- 这里如果不用count的话似乎会简便一些,因为count是统计条目数,如果不加if那么加上判断条件也没有用,但是如果用sum或者avg的话就可以直接加判断条件在里面了。
- SUM方法的复现:
-
# Write your MySQL query statement below select s.user_id, round(ifnull(sum(if(c.action="confirmed", 1, 0))/count(c.action), 0), 2) as confirmation_rate from Signups as s left join Confirmations as c on s.user_id = c.user_id group by s.user_id
- 如果在avg中加入判断条件,缺省时会认为符合条件为1,不符合条件为0,所以avg相当于浓缩了sum/count的那个步骤。
- AVG方法的复现:
-
# Write your MySQL query statement below select s.user_id, round(ifnull(avg(c.action="confirmed"), 0), 2) as confirmation_rate from Signups as s left join Confirmations as c on s.user_id = c.user_id group by s.user_id