思路:考虑曼哈顿距离(abs ( x - x0) + abs ( y - y0) ) , 如果存在曼哈顿距离为偶数的vika的朋友, 则最终都会被抓到; 如果只有奇数的曼哈顿距离,vika最终都可以和朋友互换位置从而不被抓到
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define qwq ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
const int N = 110, M = 200010, INF = 0x3f3f3f3f;
int g[N][N];
int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0};
void solve() {
int n, m, k, x, y;
cin >> n >> m >> k;
cin >> x >> y;
memset(g, 0, sizeof g);
bool ok = 0;
int p = 0;
for (int i = 1, a, b; i <= k; ++i) {
cin >> a >> b;
int t = abs(x - a) + abs(y - b);
if (!(t & 1))
p++;
}
if (p == 0)
puts("YES");
else
puts("NO");
}
int main() {
qwq;
int T;
cin >> T;
while (T--)
solve();
return 0;
}
思路:记录每一种颜色出现的位置,找出最大距离和次大距离, 用最大距离的一半(因为可以进行一次染色)和次大距离进行比较,取大的那一个, 最后再对这些最大值进行取小
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define qwq ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
const int N = 200010, M = 200010, INF = 0x3f3f3f3f;
void solve() {
int n, k;
cin >> n >> k;
vector <int> lst(k + 1, 0); // 记录第i种颜色上一次出现的位置,初始化为0
vector <vector<int> > a(k + 1);
for (int i = 1, x; i <= n; ++ i) {
cin >> x;
a[x].push_back(i - lst[x] - 1);
lst[x] = i;
}
int ans = n;
for (int i = 1; i <= k; ++ i) {
a[i].push_back(n - lst[i]); // 还要判断 n + 1 到该种颜色最后出现的位置之间的距离
sort(a[i].begin(), a[i].end(), greater<int>()); // 从大到小排序
int res = a[i][0] / 2; // 最大距离除以二
if (a[i].size() > 1) { // 不判断可能会数组越界
res = max(res, a[i][1]); // 和次大距离进行比较, 取大的那一个
}
ans = min(ans, res);
}
cout << ans << '\n';
}
int main(){
qwq; int T = 1;
cin >> T;
while (T -- )
solve();
return 0;
}
思路:如果a[i]和b[i]都为零,那么数列中的所有数都为零。
若a[i]>=b[i] 初始和为a[i]+b[i], 处理一次后和为 b[i]+a[i]-b[i] = a[i] 和减小;
若a[i]<b[i] 初始和为a[i]+b[i], 处理两次后和为 b[i]+a[i]-a[i] = b[i] 和减小;
由于非负整数之和不可能无限减小,最终其中一个数a[i],b[i]将变为零(bi为零在进行一次操作后变为ai为0)之后0将会以 3的周期交替出现(若 a[i] = 0, b[i] = x ( x > 0) , 则 变化规律是 (0, x) -> (x, x) -> (x, 0) -> (0, x))。在问题中,我们需要计算每一个位置在经过几轮后第一次得到 0 。如果所有的位置得到 0 的轮数对 3 同余,则答案为 Yes 。
考虑如何快速计算这个轮数。发现当 b[i] >= 2 * a[i] 时, 经过 3 轮后会变成 (a[i], b[i]) -> (b[i], b[i] - a[i]) -> (b[i] - a[i], a[i]) -> (a[i], b[i] - 2 * a[i]) 即b[i] 减少了2 * a[i]
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define qwq ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
const int N = 200010, M = 200010, INF = 0x3f3f3f3f;
void solve() {
int n;
cin >> n;
vector<int> a(n), b(n);
for (int i = 0; i < n; ++ i)
cin >> a[i];
for (int i = 0; i < n; ++ i)
cin >> b[i];
// 记录每组数据操作次数对3的余数 如果所有的位置得到 0 的轮数对 3 同余,则答案为 Yes 。
int t = -1;
for (int i = 0; i < n; ++ i) {
if (a[i] == 0 && b[i] == 0)
continue;
int v = 0;
int x = a[i], y = b[i];
while (x != 0) { // 找到第一次出现 0 的时刻
y %= (2 * x);
tie(x, y) = make_pair(y, abs(x - y));
v = (v + 1) % 3;
}
if (t != -1 && v != t) { // 出现了对两种对3取余的结果
puts("NO");
return;
}
t = v; // 记录操作次数对3的余数
}
puts("YES");
}
int main() {
qwq; int T = 1;
cin >> T;
while (T -- )
solve();
return 0;
}