Codeforces Round 885 (Div. 2) A ~ C

A-Vika and Her Friends

思路:考虑曼哈顿距离(abs ( x - x0) + abs ( y - y0) ) , 如果存在曼哈顿距离为偶数的vika的朋友, 则最终都会被抓到; 如果只有奇数的曼哈顿距离,vika最终都可以和朋友互换位置从而不被抓到

#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define qwq ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
const int N = 110, M = 200010, INF = 0x3f3f3f3f;
int g[N][N];
int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0};
void solve() {
    int n, m, k, x, y;
    cin >> n >> m >> k;
    cin >> x >> y;
    memset(g, 0, sizeof g);
    bool ok = 0;
    int p = 0;
    for (int i = 1, a, b; i <= k; ++i) {
        cin >> a >> b;
        int t = abs(x - a) + abs(y - b);
        if (!(t & 1))
            p++;
    }
    if (p == 0)
        puts("YES");
    else
        puts("NO");
}
int main() {
    qwq;
    int T;
    cin >> T;
    while (T--)
        solve();

    return 0;
}

B-Vika and the Bridge

思路:记录每一种颜色出现的位置,找出最大距离和次大距离, 用最大距离的一半(因为可以进行一次染色)和次大距离进行比较,取大的那一个, 最后再对这些最大值进行取小

#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define qwq ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
const int N = 200010, M = 200010, INF = 0x3f3f3f3f;

void solve() {
	int n, k;
    cin >> n >> k;
	vector <int> lst(k + 1, 0); // 记录第i种颜色上一次出现的位置,初始化为0
	vector <vector<int> > a(k + 1);
	
	for (int i = 1, x; i <= n; ++ i) {
		cin >> x;
		a[x].push_back(i - lst[x] - 1);
		lst[x] = i;
	}
	int ans = n;
	for (int i = 1; i <= k; ++ i) {
		a[i].push_back(n - lst[i]);  // 还要判断 n + 1 到该种颜色最后出现的位置之间的距离
		sort(a[i].begin(), a[i].end(), greater<int>()); //  从大到小排序
		int res = a[i][0] / 2;  // 最大距离除以二
		if (a[i].size() > 1) { // 不判断可能会数组越界
			res = max(res, a[i][1]); // 和次大距离进行比较, 取大的那一个
		}
		ans = min(ans, res);
	}
	cout << ans << '\n';
}
int main(){
	qwq; int T = 1;
	cin >> T;
	while (T -- ) 
		solve();
	
	return 0;
}

C-Vika and Price Tags

思路:如果a[i]和b[i]都为零,那么数列中的所有数都为零。

若a[i]>=b[i] 初始和为a[i]+b[i], 处理一次后和为 b[i]+a[i]-b[i] = a[i]  和减小;

若a[i]<b[i]   初始和为a[i]+b[i], 处理两次后和为 b[i]+a[i]-a[i] = b[i]  和减小;

由于非负整数之和不可能无限减小,最终其中一个数a[i],b[i]将变为零(bi为零在进行一次操作后变为ai为0)之后0将会以 3的周期交替出现(若 a[i] = 0, b[i] = x ( x > 0) , 则 变化规律是 (0, x) -> (x, x) -> (x, 0) -> (0, x))。在问题中,我们需要计算每一个位置在经过几轮后第一次得到 0 。如果所有的位置得到 0 的轮数对 3 同余,则答案为 Yes 。

考虑如何快速计算这个轮数。发现当 b[i] >= 2 * a[i] 时, 经过 3 轮后会变成 (a[i], b[i]) -> (b[i], b[i] - a[i]) -> (b[i] - a[i], a[i]) -> (a[i], b[i] - 2 * a[i]) 即b[i] 减少了2 * a[i] 

#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define qwq ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
const int N = 200010, M = 200010, INF = 0x3f3f3f3f;

void solve() {
	int n;
    cin >> n;
    vector<int> a(n), b(n);
    for (int i = 0; i < n; ++ i) 
        cin >> a[i];
    for (int i = 0; i < n; ++ i)
        cin >> b[i];
    // 记录每组数据操作次数对3的余数 如果所有的位置得到 0 的轮数对 3 同余,则答案为 Yes 。
    int t = -1;
    for (int i = 0; i < n; ++ i) {
        if (a[i] == 0 && b[i] == 0) 
            continue;
        int v = 0;
        int x = a[i], y = b[i];
        while (x != 0) { // 找到第一次出现 0 的时刻
            y %= (2 * x);
            tie(x, y) = make_pair(y, abs(x - y));
            v = (v + 1) % 3;
        }
        if (t != -1 && v != t) { // 出现了对两种对3取余的结果
            puts("NO");
            return;
        }
        t = v; // 记录操作次数对3的余数
    }
    puts("YES");
}
int main() {
	qwq; int T = 1;
	cin >> T;
	while (T -- ) 
		solve();
	
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值