听说这10道大数据面试题把 98% 的求职者拒之BAT大厂门外(附解题方法)

本文整理了10道大数据面试题,涉及URL去重、query频度排序、电话号码计数、中位数求解、高频词查找、IP访问统计、整数去重、数字存在判断、热门查询串查询和TopN问题。解题思路包括分治策略和位图法,适合内存有限的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

最近不少读者找我要大数据面试题,我整理了很久,筛选出这10道容易出错的大数据面试题,希望对大家有所帮助。题目与解答整理自互联网,感谢分享这些面经的技术大牛们!

开始之前,记得点赞收藏加关注哦 ,需要下载PDF版本和更多知识点、面试题的朋友可以点一点下方链接免费领取

链接:点这里!!! 暗号:CSDN

在这里插入图片描述

题目概览

  1. 如何从大量的 URL 中找出相同的 URL?(百度)
  2. 如何按照 query 的频度排序?(百度)
  3. 如何统计不同电话号码的个数?(百度)
  4. 如何从 5 亿个数中找出中位数?(百度)
  5. 如何从大量数据中找出高频词?(百度)
  6. 如何找出某一天访问百度网站最多的 IP?(百度)
  7. 如何在大量的数据中找出不重复的整数?(百度)
  8. 如何在大量的数据中判断一个数是否存在?(腾讯)
  9. 如何查询最热门的查询串?(腾讯)
  10. 如何找出排名前 500 的数?(腾讯)

题目分析

下面依次对以下题目进行解题思路分析:

1、如何从大量的 URL 中找出相同的 URL?

题目描述

给定 a、b 两个文件,各存放 50 亿个 URL,每个 URL 各占 64B,内存限制是 4G。请找出 a、b 两个文件共同的 URL。

解答思路

每个 URL 占 64B,那么 50 亿个 URL占用的空间大小约为 320GB。
5,000,000,000 * 64B ≈ 5GB * 64 = 320GB

由于内存大小只有 4G,因此,我们不可能一次性把所有 URL 加载到内存中处理。对于这种类型的题目,一般采用分治策略,即:把一个文件中的 URL 按照某个特征划分为多个小文件,使得每个小文件大小不超过 4G,这样就可以把这个小文件读到内存中进行处理了。

思路如下:

首先遍历文件 a,对遍历到的 URL 求 hash(URL) % 1000,根据计算结果把遍历到的 URL 存储到 a0, a1, a2, …, a999,这样每个大小约为 300MB。使用同样的方法遍历文件 b,把文件 b 中的 URL 分别存储到文件 b0, b1, b2, …, b999 中。这样处理过后,所有可能相同的 URL 都在对应的小文件中,即 a0 对应 b0, …, a999 对应 b999,不对应的小文件不可能有相同的 URL。那么接下来,我们只需要求出这 1000 对小文件中相同的 URL 就好了。
接着遍历 ai( i∈[0,999]),把 URL 存储到一个 HashSet 集合中。然后遍历 bi 中每个 URL,看在 HashSet 集合中是否存在,若存在,说明这就是共同的 URL,可以把这个 URL 保存到一个单独的文件中。

方法总结

分而治之,进行哈希取余;对每个子文件进行 HashSet 统计。

2、如何按照 query 的频度排序?(百度)

题目描述

有 10 个文件,每个文件大小为 1G,每个文件的每一行存放的都是用户的 query,每个文件的 query 都可能重复。要求按照 query 的频度排序。

解答思路

如果 query 的重复度比较大,可以考虑一次性把所有 query 读入内存中处理;如果 query 的重复率不高,那么可用内存不足以容纳所有的 query,这时候就需要采用分治法或其他的方法来解决。

方法一:HashMap 法

如果 query 重复率高,说明不同 query 总数比较小,可以考虑把所有的 query 都加载到内存中的 HashMap 中。接着就可以按照 query 出现的次数进行排序。

方法二:分治法

分治法需要根据数据量大小以及可用内存的大小来确定问题划分的规模。对于这道题,可以顺序遍历 10 个文件中的 query,通过 Hash 函数 hash(query) % 10 把这些 query 划分到 10 个小文件中。之后对每个小文件使用 HashMap 统计 query 出现次数,根据次数排序并写入到零外一个单独文件中。
接着对所有文件按照 query 的次数进行排序,这里可以使用归并排序(由于无法把所有 query 都读入内存,因此需要使用外排序)。

方法总结

内存若够,直接读入进行排序;
内存不够,先划分为小文件,小文件排好序后,整理使用外排序进行归并。

3、如何统计不同电话号码的个数?(百度)

题目描述

已知某个文件内包含一些电话号码,每个号码为 8 位数字,统计不同号码的个数。

解答思路

这道题本质还是求解数据重复的问题,对于这类问题,一般首先考虑位图法。

对于本题,8 位电话号码可以表示的号码个数为 108 个,即 1 亿个。我们每个号码用一个 bit 来表示,则总共需要 1 亿个 bit,内存占用约 100M。

思路如下:

申请一个位图数组,长度为 1 亿,初始化为 0。然后遍历所有电话号码,把号码对应的位图中的位置置为 1。遍历完成后,如果 bit 为 1,则表示这个电话号码在文件中存在,否则不存在。bit 值为 1 的数量即为 不同电话号码的个数。

方法总结

求解数据重复问题,记得考虑位图法。

4、如何从 5 亿个数中找出中位数?(百度)

题目描述

从 5 亿个数中找出中位数。数据排序后,位置在最中间的数就是中位数。当样本数为奇数时,中位数为 第 (N+1)/2 个数;当样本数为偶数时,中位数为 第 N/2 个数与第 1+N/2 个数的均值。

解答思路

如果这道题没有内存大小限制,则可以把所有数读到内存中排序后找出中位数。但是最好的排序算法的时间复杂度都为 O(NlogN)。这里使用其他方法。

方法一:双堆法

维护两个堆,一个大顶堆,一个小顶堆。大顶堆中最大的数小于等于小顶堆中最小的数;保证这两个堆中的元素个数的差不超过 1。

若数据总数为偶数,当这两个堆建好之后,中位数就是这两个堆顶元素的平均值。当数据总数为奇数时,根据两个堆的大小,中位数一定在数据多的堆的堆顶。

class MedianFinder {
   
    
    private PriorityQueue<Integer> maxHeap;
    private PriorityQueue<Integer> minHeap;

    /** initialize your data structure here. */
    public MedianFinder() {
   
        maxHeap = new PriorityQueue<>(Comparator.reverseOrder());
        minHeap = new PriorityQueue<>(Integer::compareTo);
    }
    
    public void addNum(int num) {
   
        if (maxHeap.isEmpty() || maxHeap.
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值