1.两数之和
给定一个整数数组nums和一个整数目标值target,请在该数组中找出和为目标值 target的那两个整数,并返回它们的数组下标。
可以假设每个输入只对应一种答案,但是,数组中同一个元素在答案里不能重复出现。
可以按任意顺序返回答案。
- 示例1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
- 示例2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
- 示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
vector<int> result;
for(int i = 0; i < nums.size()-1; i++)
for(int j = i + 1; j < nums.size(); j++)
if(nums[i] + nums[j] == target) {
result.push_back(i);
result.push_back(j);
}
return result;
}
};
vector<int> result;
result.push_back(i);
vector<int> result(2);-->result = [0, 0];
result[0] = i;
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
int len = nums.size();
map<int, int> m;
vector<int> result(2);
for (int i = 0; i < len; i++)
m[nums[i]]= i;
for (int i = 0; i < len; i++) {
int c = target - nums[i];
if (m.count(c) && m[c] != i) {
result[0] = i;
result[1] = m[c];
break;
}
}
return result;
}
};
复杂度分析:
方法一:
- 时间复杂度:O(n2), 对于每个元素,我们试图通过遍历数组的其余部分来寻找它所对应的目标元素,这将耗费 O(n) 的时间。因此时间复杂度为 O(n2)。
- 空间复杂度:O(1)。
方法二:
- 时间复杂度:O(n), 我们只遍历了包含有 n 个元素的列表一次。在表中进行的每次查找只花费 O(1) 的时间。
- 空间复杂度:O(n), 所需的额外空间取决于哈希表中存储的元素数量,该表最多需要存储 n 个元素。
2.两数相加
给定两个非空的链表,表示两个非负整数。每位数按照逆序方式存储,并且每个节点只存储一位数字。
请将两数相加,并以相同形式返回一个表示和的链表。
可以假设除了数字 0 之外,这两个数字都不会以0开头。
- 示例1:
输入:2 -> 4 -> 3 、 5 -> 6 -> 4
输出:7 -> 0 -> 8
原因:342 + 465 = 807
- 示例2
输入:l1 = [0], l2 = [0]
输出:[0]
- 示例 3:
输入:l1 = [9,9,9,9,9,9,9], l2 = [9,9,9,9]
输出:[8,9,9,9,0,0,0,1]
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
ListNode* p = l1;
ListNode* q = l2;
ListNode* l3 = new ListNode(0);
ListNode* curr = l3;
int carry = 0;
while (p!=NULL || q!=NULL) {
int x = (p!=NULL)?p->val:0;
int y = (q!=NULL)?q->val:0;
int sum = x + y + carry;
curr->next = new ListNode(sum%10);
carry = sum/10;
curr = curr->next;
if (p!=NULL) p = p->next;
if (q!=NULL) q = q->next;
}
if (carry > 0) curr->next = new ListNode(carry);
return l3->next;
}
};
复杂度分析
- 时间复杂度:O(max(m, n)),假设 m 和 n 分别表示 l1 和 l2 的长度,上面的算法最多重复 max(m, n) 次。
- 空间复杂度:O(max(m, n)), 新列表的长度最多为max(m, n) + 1。
3.无重复字符的最长子串
给定一个字符串s,找出不含有重复字符的最长子串的长度。
- 示例 1:
输入: “abcabcbb”
输出: 3
解释: 无重复字符的最长子串是 “abc”,其长度为 3。
- 示例 2:
输入: “bbbbb”
输出: 1
解释: 无重复字符的最长子串是 “b”,其长度为 1。
- 示例 3:
输入: “pwwkew”
输出: 3
解释: 无重复字符的最长子串是 “wke”,其长度为 3。请注意,答案必须是一个子串,“pwke” 是一个子序列 而不是子串。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
if (s.empty())
return 0;
else {
int res = 1;
int start = 0;
int middle, end;
for (int end = start + 1; end < s.size(); end++) {
for (middle = start; middle < end; middle++)
if(s[middle] == s[end])
break;
if (middle != end) {
res = max(res, end - start); // 上一个end
start = middle + 1;
}
else
res = max(res, end - start + 1);
}
return res;
}
}
};
4.两个排序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 。请找出并返回这两个有序(正序)数组的中位数。
要求算法的时间复杂度为 O(log (m+n)) 。可以假设 nums1 和 nums2 不同时为空。
- 示例 1:
nums1 = [1, 3], nums2 = [2]
中位数是 2.0
- 示例 2:
nums1 = [1, 2], nums2 = [3, 4]
中位数是 (2 + 3)/2 = 2.5
- 示例 3:
输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000
- 示例 4:
输入:nums1 = [], nums2 = [1]
输出:1.00000
- 示例 5:
输入:nums1 = [2], nums2 = []
输出:2.00000
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int m1 = nums1.size();
int m2 = nums2.size();
int sum = m1 + m2;
int l1 = 0;
int l2 = 0;
if (sum == 1)
return (m1>m2)?nums1[0]:nums2[0];
else {
int m = sum/2 + 1;
double nums3[m];
for (int i = 0; i < m; i++) {
if (l1 == m1)
nums3[i] = nums2[l2++];
else if (l2 == m2)
nums3[i] = nums1[l1++];
else if (nums1[l1] <= nums2[l2])
nums3[i] = nums1[l1++];
else if (nums1[l1] > nums2[l2])
nums3[i] = nums2[l2++];
}
if (sum%2 == 0)
return (nums3[m - 2] + nums3[m - 1])/2;
else
return nums3[m - 1];
}
}
};
5.最长回文子串
给定一个字符串 s,找到 s 中最长的回文子串。
你可以假设 s 的最大长度为1000。
- 示例 1:
输入: “babad”
输出: “bab”
注意: "aba"也是一个有效答案。
- 示例 2:
输入: “cbbd”
输出: “bb”
- 示例 3:
输入:s = “a”
输出:“a”
- 示例 4:
输入:s = “ac”
输出:“a”
// 方法一:建立string,220ms
class Solution {
public:
string longestPalindrome(string s) {
string res;
for (int f = 0; f < s.size(); f++) {
for (int e = s.size() - 1; (e >= f)&(res.size() < e - f + 1); e--) {
if (s[f] == s[e]) {
int i = f;
int j = e;
while (i<=j) {
if (s[i] != s[j])
break;
else if ((s[i] == s[j])&(i == j||i == j - 1)) {
string res_0;
for (int k = f; k < e + 1; k++)
res_0 = res_0 + s[k];
res = res_0;
}
++i;
--j;
}
}
}
}
return res;
}
};
// 方法二:返回原string子串,96ms
class Solution {
public:
string longestPalindrome(string s) {
int res_l = 0;
int res_b = 0;
int res_e = 0;
for (int f = 0; (f < s.size())&(res_l < s.size() - f); f++) {
for (int e = s.size() - 1; (e >= f)&(res_l < e - f + 1); e--) {
if (s[f] == s[e]) {
int i = f;
int j = e;
while (i<=j) {
if (s[i] != s[j])
break;
else if ((s[i] == s[j])&(i == j||i == j - 1)) {
res_b = f;
res_e = e;
res_l = e - f + 1;
}
++i;
--j;
}
}
}
}
return s.substr(res_b, res_l);
}
};
6.Z字形变换
将一个给定字符串 s 根据给定的行数 numRows ,以从上往下、从左到右进行 Z 字形排列。
比如输入字符串为 “PAYPALISHIRING” 行数为 3 时,排列如下:
P A H N
A P L S I I G
Y I R
之后,你的输出需要从左往右逐行读取,产生出一个新的字符串,比如:“PAHNAPLSIIGYIR”。
请你实现这个将字符串进行指定行数变换的函数:
string convert(string s, int numRows);
- 示例 1:
输入:s = “PAYPALISHIRING”, numRows = 3
输出:“PAHNAPLSIIGYIR”
- 示例 2:
输入:s = “PAYPALISHIRING”, numRows = 4
输出:“PINALSIGYAHRPI”
解释:
P I N
A L S I G
Y A H R
P I
- 示例 3:
输入:s = “A”, numRows = 1
输出:“A”
class Solution {
public:
string convert(string s, int numRows) {
if (numRows == 1)
return s;
string res;
for (int row = 0; row < numRows; row++) {
for (int i = row; i < s.size(); i += (2*(numRows - 1))) {
res += s[i];
if (row && (numRows-1-row) && ((i+2*(numRows-1-row))<s.size()))
res += s[i+2*(numRows-1-row)];
}
}
return res;
}
};
7.整数反转
给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。
如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。
假设环境不允许存储 64 位整数(有符号或无符号)。
- 示例 1:
输入:x = 123
输出:321
- 示例 2:
输入:x = -123
输出:-321
- 示例 3:
输入:x = 120
输出:21
- 示例 4:
输入:x = 0
输出:0
class Solution {
public:
int reverse(int x) {
int res = 0;
bool zero_flag = true;
int max = (pow(2, 31) - 1) / 10;
int min = -(pow(2, 31)) / 10;
while (x) {
int i = x % 10;
if (zero_flag) {
if (i) {
res = i;
zero_flag = false;
}
}
else {
if (res > max || res < min)
return 0;
else if ((res == max && i > 7) || (res == min && i < -8))
return 0;
else
res = res*10 + i;
}
x = x / 10;
}
return res;
}
};
8.字符串转换整数(atoi)
请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C++ 中的 atoi 函数)。
函数 myAtoi(string s) 的算法如下:
- 读入字符串并丢弃无用的前导空格
- 检查下一个字符(假设还未到字符末尾)为正还是负号,读取该字符(如果有)。 确定最终结果是负数还是正数。 如果两者都不存在,则假定结果为正。
- 读入下一个字符,直到到达下一个非数字字符或到达输入的结尾。字符串的其余部分将被忽略。
- 将前面步骤读入的这些数字转换为整数(即,“123” -> 123, “0032” -> 32)。如果没有读入数字,则整数为 0 。必要时更改符号(从步骤 2 开始)。
- 如果整数数超过 32 位有符号整数范围 [−231, 231 − 1] ,需要截断这个整数,使其保持在这个范围内。具体来说,小于 −231 的整数应该被固定为 −231 ,大于 231 − 1 的整数应该被固定为 231 − 1 。
- 返回整数作为最终结果。
注意:
-
本题中的空白字符只包括空格字符 ’ ’ 。
-
除前导空格或数字后的其余字符串外,请勿忽略 任何其他字符。
-
示例 1:
输入: “42”
输出: 42
- 示例 2:
输入: " -42"
输出: -42
解释: 第一个非空白字符为 ‘-’, 它是一个负号。我们尽可能将负号与后面所有连续出现的数字组合起来,最后得到 -42 。
- 示例 3:
输入: “4193 with words”
输出: 4193
解释: 转换截止于数字 ‘3’ ,因为它的下一个字符不为数字。
- 示例 4:
输入: “words and 987”
输出: 0
解释: 第一个非空字符是 ‘w’, 但它不是数字或正、负号。
因此无法执行有效的转换。
- 示例 5:
输入: “-91283472332”
输出: -2147483648
解释: 数字 “-91283472332” 超过 32 位有符号整数范围。因此返回 INT_MIN (−231) 。
class Solution {
public:
int myAtoi(string s) {
int res = 0;
int i = 0;
int flag = 1;
int max = INT_MAX / 10;
int min = INT_MIN / 10;
// 空格
while (s[i] == 32)
i++;
if (s[i] == 43) // +
i++;
else if (s[i] == 45) { // -
flag = -1;
i++;
}
for (i; i < s.size(); i++) {
if (s[i] < 47 || s[i] > 58)
break;
else {
int j = s[i] - 48;
if (res > max || res < min)
return flag == 1 ? INT_MAX : INT_MIN;
else if ((res == max && j > 7) || (res == min && j > 8))
return flag == 1 ? INT_MAX : INT_MIN;
else
res = res*10 + flag*j;
}
}
return res;
}
};
9.回文数
给你一个整数 x
,如果 x
是一个回文整数,返回 true
;否则,返回 false
。
回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。例如,121
是回文,而 123
不是。
- 示例 1:
输入:x = 121
输出:true
- 示例 2:
输入:x = -121
输出:false
解释:从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
- 示例 3:
输入:x = 10
输出:false
解释:从右向左读, 为 01 。因此它不是一个回文数。
- 示例 4:
输入:x = -101
输出:false
class Solution {
public:
bool isPalindrome(int x) {
if (x < 0)
return false;
string x_str = to_string(x);
int len = x_str.size();
for (int i = 0; i < len/2 + 1; i++) {
if (x_str[i] != x_str[len - 1 - i])
return false;
}
return true;
}
};
10.正则表达式匹配
给你一个字符串 s
和一个字符规律 p
,请你来实现一个支持 '.'
和 '*'
的正则表达式匹配。
'.'
匹配任意单个字符'*'
匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s
的,而不是部分字符串。
- 示例 1:
输入:s = “aa” p = “a”
输出:false
解释:“a” 无法匹配 “aa” 整个字符串。
- 示例 2:
输入:s = “aa” p = “a*”
输出:true
解释:因为 ‘*’ 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 ‘a’。因此,字符串 “aa” 可被视为 ‘a’ 重复了一次。
- 示例 3:
输入:s = “ab” p = “."
输出:true
解释:".” 表示可匹配零个或多个(’*’)任意字符(’.’)。
- 示例 4:
输入:s = “aab” p = “cab”
输出:true
解释:因为 ‘*’ 表示零个或多个,这里 ‘c’ 为 0 个, ‘a’ 被重复一次。因此可以匹配字符串 “aab”。
- 示例 5:
输入:s = “mississippi” p = “misisp*.”
输出:false