钢筋点根环境部署

系统环境:Ubuntu 16.04 LTS

1 标题系统环境

1.1 apt-get镜像源更换

sudo vim /etc/apt/sources.list

用以下内容更换,这个是阿里云的源,当然也可更换其他源,这里仅做参考(注意:不同系统的镜像源地址不同,需要谨慎操作,这个对应的是Ubuntu 16.04 LTS):

# deb cdrom:[Ubuntu 16.04 LTS _Xenial Xerus_ - Release amd64 (20160420.1)]/ xenial main restricted
deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-properties
deb http://archive.canonical.com/ubuntu xenial partner
deb-src http://archive.canonical.com/ubuntu xenial partner
deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-security universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse

修改完毕后,更新:

sudo apt-get update

2 显卡驱动配置

范例配置:cuda-9.0 + cudnn 7.4.15
需要的可以自己搜寻其他版本配置。

2.1 显卡驱动安装

查看显卡型号:

lspci | grep -i nvidia

下载相应的显卡驱动,linux下后缀为".run"
显卡驱动下载地址:https://www.nvidia.cn/Download/index.aspx?lang=cn
打开终端alt+f4,先删除旧的驱动:

sudo apt-get purge nvidia*

禁用自带的nouveau nvidia驱动(很重要!
更改文件:

sudo gedit /etc/modprobe.d/blacklist.conf

在文件最后加入:

blacklist nouveau
options nouveau modeset=0

更新内核:

sudo update-initramfs -u

修改后重新启动系统sudo reboot,用以确认nouveau是否被干掉,使用命令:

lsmod | grep nouveau		#无输出则表示禁用成功。
sudo service lightdm stop	#停用图形驱动程序,进入命令行模式
sudo chmod +x Nvidia.***.run
sudo ./Nvidia.**.run 	#全部选是
sudo service lightdm restart  	#重启图形界面
nvidia-smi 	#出现显卡驱动则表示安装成功

2.2 cuda-9.0

cuda下载地址 :https://developer.nvidia.com/cuda-toolkit-archive
安装依赖:

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

安装cuda:

sudo sh cuda*.run

其中,可以ctrl+c完成协议阅读,显卡驱动选择no,其他选择yes和默认安装路径即可。
添加环境变量:

vim ~/.bashrc

加入:

export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64\ ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

更新源:

source ~/.bashrc

验证:

cd /usr/local/cuda-9.0/samples/1_Utilities/deviceQuery
make
sudo ./deviceQuery

若返回对应GPU信息则表示cuda安装成功。

2.3 cudnn 7.4.15

cudnn下载地址:https://developer.nvidia.com/rdp/cudnn-archive
将下载的cudnn解压至当前目录:

tar zxvf cudnn-9.0-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/ 
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ 
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so.7 libcudnn.so		#删除原有动态文件
sudo ln -s libcudnn.so.7.1.4 libcudnn.so.7  
sudo ln -s libcudnn.so.7 libcudnn.so  
sudo ldconfig
nvcc -V

若出现cuda版本信息表示操作成功。

3 python运行环境

本次环境部署python版本需要3.6版本。
python3.6安装可参考:

https://www.hanyibo.com/python/Ubuntu-install-Python3-6.html

3.1 pip换源

pip换国内镜像源,解决国外源下载太慢。

mkdir ~/.pip
vim ~/.pip/pip.conf

添加下面的内容:

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
trusted-host = pypi.tuna.tsinghua.edu.cn

保存并退出。

3.2 python所需环境依赖

主要依赖如下,如果运行期间有其他需要,请自行安装。

  • torch == 1.1.0
  • torchvision == 0.3.0
  • numpy
  • flask
  • base64
  • opencv-python == 3.4.6
  • mmcv == 0.2.14
  • sklearn
  • scikit-image
  • matplotlib

3.3 相关文件替换

下载mmdetection库用编译使用。

git clone https://github.com/xinyu-ch/mmdetection.git
cd mmdetection
python setup.py develop

拷贝mmdet/ops/nms/soft_nms_cpu.cpython-36m-x86_64-linux-gnu.so 文件到RebarCountDeploy对应文件夹下。

更改mmcv底层文件:

sudo vim /usr/local/lib/python3.6/site-packages/mmcv/visualization/image.py

替换:

    if show:
        imshow(img, win_name, wait_time)
    if out_file is not None:
        imwrite(img, out_file)

为:

	return bboxes

3.4 ip地址更改

更改run_pytorch_server.py中底端ip地址和端口。
后台运行模型:

nohup python run_pytorch_server.py &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值