形如求解 $ax+by=c$ 知道 $a,b,c$ 求解整数解 $x,y$ 的值。
通常使用 `exgcd` 算法求解。
首先考虑无整数解的情况,根据贝祖定理,对于 $a\in Z,b\in Z,c\in Z$ 如果有两个整数 $x,y$ 满足 $ax+by=c$ 那么 $c=k\times\gcd(a,b),k\in Z$。
即:如果 $c\mod\gcd(a,b)!=0$ 那么就无解。
如果有解,那么:
令 $ax+by=\gcd(a,b)$,$bx+(a\mod b)y=\gcd(b,a\mod b)$。
因为 $\gcd(a,b)=\gcd(b,a\mod b)$。
所以 $ax+by=bx+(a\mod b)y$。
因为 $a\mod b=a-\lfloor a/b\rfloor\times b$。
所以原式为 $ax+by=bx+(a-\lfloor a/b\rfloor\times b)y$。
化简下得:$ax+by=bx+ay-\lfloor a/b\rfloor by$。
也就是 $ax+by=b(x-\lfloor a/b\rfloor y)+ay$。
所以 $x=y,y=x-\lfloor a/b\rfloor y$。
但是这么做只能求出 $ax+by=\gcd(a,b)$ 的特解,并不能求出 $ax+by=c$ 的特解,但是因为贝祖定理得 $c=k\times\gcd(a,b),k\in Z$ 所以将两边同时乘 $c/\gcd(a,b)$ 因为 $c\mod\gcd(a,b)=0$ 所以 $c/\gcd(a,b)\in Z$。
又因为 $x,y\in Z$ 所以 $x\times(c/\gcd(a,b))\in Z$ 同理 $y\times(c/\gcd(a,b))\in Z$。所以不用担心是不是整数的问题。
模板题:
https://www.luogu.com.cn/problem/U420974
代码:
```cpp
#include<bits/stdc++.h>
using namespace std;
typedef __int128 ll;
ll a,b,x,y,c;
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b){
x=1,y=0;
return a;
}
ll d=exgcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-(a/b)*y;
return d;
}
template<typename T>inline void rd(T&r){
r=0;char c=getchar(),m=1;
for(;!isdigit(c);c=getchar()){
if(c=='-')m=-1;
}
for(;isdigit(c);c=getchar()){
r=(r<<3)+(r<<1)+(c^48);
}
r*=m;
}
template<typename T>inline void wt(T r){
if(r<0){
putchar('-');wt(-r);return;
}
if(r>9) wt(r/10);
putchar(r%10+'0');
}
int main(){
rd(a);rd(b);rd(c);
c=-c;
ll g=exgcd(a,b,x,y);
if(c%g){
puts("-1");
return 0;
}
ll t=c/g;
wt(x*t);
putchar(' ');
wt(y*t);
putchar('\n');
return 0;
}
```
exgcd
最新推荐文章于 2024-10-30 16:47:45 发布