给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右
侧所能看到的节点值。示例:
输入: [1,2,3,null,5,null,4] 输出: [1, 3, 4]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/binary-tree-right-side-view
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
读完题目我第一想法:直接右子树优先,如果没有右子树再走左子树,一直向下直到叶子节点——是不是这样就可以直接搞定呢?答案当然是否定的,因为可能存在二叉树不平衡,深度最深的叶子节点长在左边,比如一棵树[1,2,3,4,NULL,NULL,NULL,NULL,NULL],直接往右只能遍历到两层,其实这棵树有三层。
也就是说必须要遍历一遍这棵树才行。
既然要遍历,那就右子树优先的前序遍历,维护一个变量(res),然后当遍历到一个从来没有遍历到过的深度时,由于我们的右子树优先原则,这个节点一定能被看见,将其记录即可。
时间复杂度O(n),空间复杂度O(lgn),如果树长得不好可能是O(n),不我之直接malloc(sizeof(int)*1000)就完事了(嘿嘿)。
代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
// 从右到左 root - right - left 次序遍历
void travel(struct TreeNode* root,int depth, int* returnSize, int* res){
if(root == NULL) return;
// 每层最右节点看得见,存入res,更新*returnSize
if(depth > *returnSize){
res[*returnSize] = root -> val;
*returnSize = depth;
}
// 遍历 右、左子树
travel(root -> right, depth + 1, returnSize, res);
travel(root -> left, depth + 1, returnSize, res);
}
int* rightSideView(struct TreeNode* root, int* returnSize){
// 初始返回数组大小为0
*returnSize = 0;
int* res = (int*)malloc(sizeof(int) * 1000);
// 初始深度应为1
travel(root, 1, returnSize, res);
return res;
}
本题我的运行结果:
只战胜了74%不到就很奇怪,我觉得我的解法应该已经没有优化空间了。
我看了眼题解,我这个算是深度优先遍历,还可以广度优先遍历,使用数据结构队列。如果采用这个思路的话,这个有点像层序遍历输出一颗二叉树,每层都单独一行打印。(我在牛客网上做过这道题),不过这题还要更简单,因为只需要“打印”每层最右侧的那个节点就可以了。
广度优先我就直接复制了评论区里的NPU_V的代码(未经过他本人同意,不过应该影响不大),代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* rightSideView(struct TreeNode* root, int* returnSize){
*returnSize = 0;
int *res = malloc(sizeof(int) * 500);
struct TreeNode *Queue[10000];
int front, last, rear;
/* front指向队列头(即出队元素)last指向该层的尾部,rear实时更新尾部 */
front = rear = 0;
Queue[root ? rear++ : rear] = root;
last = rear;
while (front < rear) {
struct TreeNode *p = Queue[front++];
/* 每次一个元素出队时,就将它的儿子添加到下一层的队列中 */
if (p->left)
Queue[rear++] = p->left;
if (p->right)
Queue[rear++] = p->right;
/* 当前元素到了该层的尾部,取出我们想要的元素,然后更新last为下一层的尾部 */
if (front == last) {
res[(*returnSize)++] = Queue[last - 1]->val;
last = rear;
}
}
return res;
}
> 作者:NPU_V
> 链接:https://leetcode-cn.com/problems/binary-tree-right-side-view/solution/cyu-yan-mo-ni-er-cha-shu-ceng-xu-bian-li-by-npu_v/
> 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
实测他的代码运行时间上和我的相同,但是其空间比我的要少。
分析原因,应该是从编译器的角度看,我的递归调用函数会导致额外的空间开销记录返回值的地址位置、运行的代码位置等参数。设立一个队列则可以省下这些空间开销。
行吧,这就是全部内容了。
看到这里容许我唠嗑几句,这是我的第二篇leetcode分析,本来想叫【leetcode攻略】的,后来想想有点太嚣张了(毕竟只是我自己经验,算不上攻略),为了鼓励自己养成每天刷leetcode写博客的好习惯,以后相关内容就叫【leetcode日记】啦!希望读者老爷们能点个赞留个评论来告诉我:有人在看我的博客!这会是我不断更新的动力源泉!