算法刷题-数组-2二分查找类

本文介绍了二分查找算法在不同场景的应用,包括搜索目标值、寻找排序数组中目标值的插入位置以及查找元素的第一个和最后一个位置。通过循环不变量简化了算法设计,并提供了防止溢出的处理方式。此外,还讨论了求解平方根和判断有效完全平方数的方法。
摘要由CSDN通过智能技术生成


循环不变量定义: 在循环过程中保持不变的性质。

循环不变量的主要作用:

  • 让算法设计的逻辑更加清晰
  • 让代码更加简洁,有更强的逻辑性
  • 证明算法的正确性

二分查找

力扣链接

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
        while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};
// 版本二
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
        while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target) {
                right = middle; // target 在左区间,在[left, middle)中
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,在[middle + 1, right)中
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};

搜索插入位置

力扣链接

class Solution {
    public int searchInsert(int[] nums, int target) {
        int left=0;
        int right = nums.length -1 ;
        while(left<=right){
            int middle =left+((right-left)>>1);
             if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        return right+1;
        //没找到
    }
}

在排序数组中查找元素的第一个和最后一个位置

力扣链接
思路
二分法查找,然后向左向右查看是否相同

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int left = 0;
        int right = nums.length -1;
        int middle=0;
        boolean find = false;
        while(left<=right){
              middle =left+((right-left)>>1);
             if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                find=true;
                break;// 数组中找到目标值,直接返回下标
            }
        }
            int[] l=new int[]{-1,-1}; 
            if(!find) return l;
            
            int i = middle;
            int j = middle;
            while(true){
                i=i-1;
                if(i<0)break;
                if(nums[i]!=target)break;
            }        
            while(true){
                j++;
                if(j>=nums.length)break;
                if(nums[j]!=target)break;            
            }
            l[0]=i+1;
            l[1]=j-1;
            return l;
        }
    }

x 的平方根

力扣链接.

class Solution {
    public int mySqrt(int x) {
        if(x==1)return 1;
        int min=0;
        int max=x;
        while(max-min>1){
            int m =(max+min)>>1;
            if(x/m <m){//防止溢出
                max=m;
            }else{
                min=m;
            }       
        }
         return min;
    }
}

有效的完全平方数

链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值