循环不变量定义: 在循环过程中保持不变的性质。
循环不变量的主要作用:
- 让算法设计的逻辑更加清晰
- 让代码更加简洁,有更强的逻辑性
- 证明算法的正确性
二分查找
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
// 版本二
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
搜索插入位置
class Solution {
public int searchInsert(int[] nums, int target) {
int left=0;
int right = nums.length -1 ;
while(left<=right){
int middle =left+((right-left)>>1);
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
return right+1;
//没找到
}
}
在排序数组中查找元素的第一个和最后一个位置
力扣链接
思路
二分法查找,然后向左向右查看是否相同
class Solution {
public int[] searchRange(int[] nums, int target) {
int left = 0;
int right = nums.length -1;
int middle=0;
boolean find = false;
while(left<=right){
middle =left+((right-left)>>1);
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
find=true;
break;// 数组中找到目标值,直接返回下标
}
}
int[] l=new int[]{-1,-1};
if(!find) return l;
int i = middle;
int j = middle;
while(true){
i=i-1;
if(i<0)break;
if(nums[i]!=target)break;
}
while(true){
j++;
if(j>=nums.length)break;
if(nums[j]!=target)break;
}
l[0]=i+1;
l[1]=j-1;
return l;
}
}
x 的平方根
力扣链接.
class Solution {
public int mySqrt(int x) {
if(x==1)return 1;
int min=0;
int max=x;
while(max-min>1){
int m =(max+min)>>1;
if(x/m <m){//防止溢出
max=m;
}else{
min=m;
}
}
return min;
}
}