扩展中国剩余定理

概述

  扩展中国剩余定理(exCRT)是中国剩余定理(CRT)更普适的版本。

   exCRT 没有 CRT 中的模数互质的限制,这一变化虽然导致可能出现无解的情况,但却令该算法能解决更为普通的线性同余方程组。此外,不一定互质也说明可能无法用 CRT 的方法解 exCRT 问题,所以我们需要考虑新的算法。

求解

给定方程组
{ x ≡ a 1 ( m o d   m 1 ) x ≡ a 2 ( m o d   m 2 ) x ≡ a 3 ( m o d   m 3 ) ⋮ x ≡ a n ( m o d   m n ) \begin{cases} x\equiv a_1(mod\ m_1) \\ x\equiv a_2(mod\ m_2) \\ x\equiv a_3(mod\ m_3) \\ \vdots \\ x\equiv a_n(mod\ m_n) \end{cases} xa1(mod m1)xa2(mod m2)xa3(mod m3)xan(mod mn)
x x x

  本着难题化简的想法,我们先考虑如何解仅含两个同余式的同余方程组:

  对于方程组

{ x ≡ a 1 ( m o d   m 1 ) x ≡ a 2 ( m o d   m 2 ) \begin{cases}x\equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\end{cases} {xa1(mod m1)xa2(mod m2)

  首先,依据同余的定义,我们可以将原本的两个线性同余方程式转换为普通的线性方程式:

{ x = a 1 + k 1 × m 1 x = a 2 + k 2 × m 2 ( k 1 ∈ Z , k 2 ∈ Z ) \begin{cases}x=a_1+ k_1\times m_1\\x=a_2+k_2\times m_2\end{cases}(k_1\in \mathbb Z,k_2\in \mathbb Z) {x=a1+k1×m1x=a2+k2×m2(k1Z,k2Z)

  联立可得 a 1 + k 1 × m 1 = a 2 + k 2 × m 2 a_1+k_1\times m_1=a_2+k_2\times m_2 a1+k1×m1=a2+k2×m2 ,再此基础上移项得 k 1 × m 1 − k 2 × m 2 = a 2 − a 1 k_1\times m_1 - k_2\times m_2=a_2 - a_1 k1×m1k2×m2=a2a1 。现在,设 A = m 1 , B = m 2 , C = a 2 − a 1 A = m_1,B = m_2, C=a_2-a_1 A=m1,B=m2,C=a2a1 ,则该式可转换为 A × k 1 + B × k 2 = C A\times k_1+B\times k_2 = C A×k1+B×k2=C

  可以发现这个式子略感熟悉。回忆一个知识点:扩展欧几里得算法求线性方程。

  可以发现,该式为扩展欧几里得的标准求解方程。所以我们可以利用扩展欧几里得算法求解 k 1 k_1 k1 ,然后代入求解,得出一组特解 x 0 x_0 x0 。可以发现对于这两个同余式来说存在通解式 x = x 0 + l c m ( m 1 , m 2 ) × k ( k ∈ Z ) x = x_0+lcm(m_1 ,m_2)\times k(k\in \mathbb Z) x=x0+lcm(m1,m2)×k(kZ) 。同时,该通解式可以转换为 x ≡ x 0 ( m o d   l c m ( m 1 , m 2 ) ) x\equiv x_0(mod\ lcm(m_1,m_2)) xx0(mod lcm(m1,m2)) 。而这个同余式与之前的 x ≡ a i ( m o d   m i ) x\equiv a_i(mod\ m_i) xai(mod mi) 没有本质区别。所以可以用这个式子代替

{ x ≡ a 1 ( m o d   m 1 ) x ≡ a 2 ( m o d   m 2 ) \begin{cases}x\equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\end{cases} {xa1(mod m1)xa2(mod m2)

  这样的话就将两个同余式合并为了一个。可以直接用扩展欧几里得算法解得线性同余方程式。

  由于总共有 n n n 项,所以如果我们运行 n − 1 n - 1 n1 次该过程,就可以将原同余方程组转换为一个线性同余方程式。同时,该线性同余方程式的 a a a 项为所求的一个特解 x 0 x_0 x0 ,通解式为 x = x 0 + k × l c m ( m 1 , m 2 , m 3 ⋯   , m n ) ( k ∈ Z ) x = x_0+k\times lcm(m_1,m_2,m_3\cdots,m_n)(k\in \mathbb Z) x=x0+k×lcm(m1,m2,m3,mn)(kZ)

code
long long x,y,m[Size],A[Size],M1,A1,n;

long long mul(long long X,long long Y,long long mod)//龟速乘,防止数据过大
{
	X%=mod;
	Y%=mod;
	long long v=(long double)X*Y/mod;
	long long Ans=X*Y-v*mod;
	if(Ans<0)
		Ans+=mod;
	else
	{
		if(Ans>mod)
		{
			Ans-=mod;
		}
	}
	return Ans;
	
}

long long exgcd(long long a,long long b)
{
	if(b==0)
	{
		x=1;
		y=0;
		return a;
	}
	long long Tem=exgcd(b,a%b);
	long long z=x;
	x=y;
	y=z-y*(a/b);
	return Tem;
}

bool exCRT()
{
	M1=m[0];
	A1=A[0];
	for(int i=1;i<n;i++)
	{
		long long Tem=A[i]-A1;
		long long temp=exgcd(M1 , m[i]);
		if(Tem%temp)
		{
			return false;
		}
		long long TEm=m[i]/temp;
		x=((x*(Tem/temp))%TEM+TEm)%TEm;
		A1+=x*M1;
		M1=M1/temp*m[i];
	}
	return true;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值