【上市公司文本分析】Python批量提取上市公司年报文本中的“MD&A”和董事会报告部分

一些做文本分析的经管类文章里在介绍时简单得用“MD&A”(即管理层讨论与分析)部分作为文本分析样本,但实际上在很多年报中并无叫该名的章节,可能还会叫董事会报告等一系列名称,所以按照下方文献的思路,重新编制代码,提取相应部分。
在这里插入图片描述

[1]姚加权,张锟澎,郭李鹏,等.人工智能如何提升企业生产效率?——基于劳动力技能结构调整的视角[J].管理世界,2024,40(02):101-116+133+117-122.DOI:10.19744/j.cnki.11-1235/f.2024.0018.

1 章节名和下一章节名设置

经过人工阅读,总结了一套经营信息所在章节的章节名,以及其下一章的章节名,粗略估计能涵盖98%以上的年报文本。

title=['董事会报告','董事局报告','经营情况讨论与分析','经营层讨论与分析','管理层讨论与分析','管理层分析与讨论','董事会工作报告','董事局工作报告']
nexttitle=['监事会工作报告\n','监事会工作报告 \n','监事会报告 \n','重要事项 \n','公司治理 \n','监事会报告\n','重要事项\n','公司治理\n']

2 核心函数

该函数的核心思路是,找出当前年报经营信息对应的章节名,同时由于目录会出现一次章节名,所以设置一些判定条件避开。

def exetract(fileName):
    with open('all txt\\'+fileName,'r',encoding='utf-8') as f:
        text=f.read()
        minindex1=sys.maxsize
        #找出公司经营信息所在章节的章节名
        for i in range(len(title)):          
            #避免第一次出现标题是在目录
            if text.find(title[i])!= -1 and text[text.find(title[i])+len(title[i])] not in ['“','。','分','一','中','关','之','》','"','—','”','第'] and text.find(title[i]) < minindex1:
                minindex1=text.find(title[i])
                topic=title[i]
                continue
            elif text.find(title[i],text.find(title[i])+1)!= -1 and text.find(title[i]) < minindex1:
                minindex1=text.find(title[i])
                topic=title[i]
        splittext=text.split(topic)     
        for ind,j in enumerate(splittext[1:]):
            if j[0:2]==' \n' or j[0]=='\n' or j[0]==' ' or j[0]=='	':
                result=''
                for k in range(ind+1,len(splittext[1:])+1):
                    result=result+splittext[k]
                break
            else:
                continue
        minindex2=sys.maxsize
        for k in range(len(nexttitle)):
            if result.find(nexttitle[k])!= -1 and result.find(nexttitle[k])<minindex2:
                minindex2=result.find(nexttitle[k])
                nexttopic=nexttitle[k]
            else:
                continue
        result=result.split(nexttopic)[0]
        with open('outputtxt\\'+fileName,'w',encoding='utf-8') as w:
            w.write(result)
            w.close()
        print(fileName+'完成')

3 全部代码

import os
import pandas as pd
import sys

# 注意,可能出现目录与章节名不一致、没有目录、目录前出现章标题的情况,需要手动调整
fileList=os.listdir('all txt')
outfileList=os.listdir('outputtxt')
title=['董事会报告','董事局报告','经营情况讨论与分析','经营层讨论与分析','管理层讨论与分析','管理层分析与讨论','董事会工作报告','董事局工作报告']
nexttitle=['监事会工作报告\n','监事会工作报告 \n','监事会报告 \n','重要事项 \n','公司治理 \n','监事会报告\n','重要事项\n','公司治理\n']

def exetract(fileName):
    with open('all txt\\'+fileName,'r',encoding='utf-8') as f:
        text=f.read()
        minindex1=sys.maxsize
        #找出公司经营信息所在章节的章节名
        for i in range(len(title)):        
            #避免第一次出现标题是在目录
            if text.find(title[i])!= -1 and text[text.find(title[i])+len(title[i])] not in ['“','。','分','一','中','关','之','》','"','—','”','第'] and text.find(title[i]) < minindex1:
                minindex1=text.find(title[i])
                topic=title[i]
                continue
            elif text.find(title[i],text.find(title[i])+1)!= -1 and text.find(title[i]) < minindex1:
                minindex1=text.find(title[i])
                topic=title[i]
        splittext=text.split(topic)
        for ind,j in enumerate(splittext[1:]):
            if j[0:2]==' \n' or j[0]=='\n' or j[0]==' ' or j[0]=='	':
                result=''
                for k in range(ind+1,len(splittext[1:])+1):
                    result=result+splittext[k]
                break
            else:
                continue
        minindex2=sys.maxsize
        for k in range(len(nexttitle)):
            if result.find(nexttitle[k])!= -1 and result.find(nexttitle[k])<minindex2:
                minindex2=result.find(nexttitle[k])
                nexttopic=nexttitle[k]
            else:
                continue
        result=result.split(nexttopic)[0]
        with open('outputtxt\\'+fileName,'w',encoding='utf-8') as w:
            #result=result.replace('\n','')#删除换行符
            w.write(result)
            w.close()
        print(fileName+'完成')
# 下方需要根据个人数据情况,调用exetract(函数)遍历全部年报文本
for i in fileList:
	exetract(i)

对于Python上市公司年报文本分析,可以采取以下步骤: 1. 准备工作:首先,需要从相关网站上爬取上市公司的历史新闻文本数据,包括时间、网址、标题正文。可以使用Python编写爬虫程序,通过分析网站结构,使用多线程或协程提高爬取效率。 2. 数据处理:将获取到的年报文本数据转换为txt格式,并进行数据处理。可以使用Python文本挖掘方式,例如提取关键词并统计词频。可以使用Python库如NLTK或spaCy进行自然语言处理,使用TF-IDF或词袋模型提取关键词,并计算词频。 3. 结果存储:将分析得到的关键词词频结果存储到Excel文件中。可以使用Python的pandas库将数据存储到Excel文件中,方便后续的数据分析可视化处理。 总结起来,Python上市公司年报文本分析包括准备工作、数据处理结果存储三个步骤。通过爬取上市公司的历史新闻文本数据,使用文本挖掘方式提取关键词统计词频,并将结果存储到Excel文件中,可以进行更深入的数据分析洞察。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [基于python上市公司年报新闻文本分类](https://blog.csdn.net/qiqi_ai_/article/details/128969776)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [【Python爬虫实战】3.A股上市公司年报关键词词频分析](https://blog.csdn.net/w646645452/article/details/130623486)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ryo_Yuki

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值