【上市公司文本分析】Python批量提取上市公司年报文本中的“MD&A”和董事会报告部分

一些做文本分析的经管类文章里在介绍时简单得用“MD&A”(即管理层讨论与分析)部分作为文本分析样本,但实际上在很多年报中并无叫该名的章节,可能还会叫董事会报告等一系列名称,所以按照下方文献的思路,重新编制代码,提取相应部分。
在这里插入图片描述

[1]姚加权,张锟澎,郭李鹏,等.人工智能如何提升企业生产效率?——基于劳动力技能结构调整的视角[J].管理世界,2024,40(02):101-116+133+117-122.DOI:10.19744/j.cnki.11-1235/f.2024.0018.

1 章节名和下一章节名设置

经过人工阅读,总结了一套经营信息所在章节的章节名,以及其下一章的章节名,粗略估计能涵盖98%以上的年报文本。

title=['董事会报告','董事局报告','经营情况讨论与分析','经营层讨论与分析','管理层讨论与分析','管理层分析与讨论','董事会工作报告','董事局工作报告']
nexttitle=['监事会工作报告\n','监事会工作报告 \n','监事会报告 \n','重要事项 \n','公司治理 \n','监事会报告\n','重要事项\n','公司治理\n']

2 核心函数

该函数的核心思路是,找出当前年报经营信息对应的章节名,同时由于目录会出现一次章节名,所以设置一些判定条件避开。

def exetract(fileName):
    with open('all txt\\'+fileName,'r',encoding='utf-8') as f:
        text=f.read()
        minindex1=sys.maxsize
        #找出公司经营信息所在章节的章节名
        for i in range(len(title)):          
            #避免第一次出现标题是在目录
            if text.find(title[i])!= -1 and text[text.find(title[i])+len(title[i])] not in ['“','。','分','一','中','关','之','》','"','—','”','第'] and text.find(title[i]) < minindex1:
                minindex1=text.find(title[i])
                topic=title[i]
                continue
            elif text.find(title[i],text.find(title[i])+1)!= -1 and text.find(title[i]) < minindex1:
                minindex1=text.find(title[i])
                topic=title[i]
        splittext=text.split(topic)     
        for ind,j in enumerate(splittext[1:]):
            if j[0:2]==' \n' or j[0]=='\n' or j[0]==' ' or j[0]=='	':
                result=''
                for k in range(ind+1,len(splittext[1:])+1):
                    result=result+splittext[k]
                break
            else:
                continue
        minindex2=sys.maxsize
        for k in range(len(nexttitle)):
            if result.find(nexttitle[k])!= -1 and result.find(nexttitle[k])<minindex2:
                minindex2=result.find(nexttitle[k])
                nexttopic=nexttitle[k]
            else:
                continue
        result=result.split(nexttopic)[0]
        with open('outputtxt\\'+fileName,'w',encoding='utf-8') as w:
            w.write(result)
            w.close()
        print(fileName+'完成')

3 全部代码

import os
import pandas as pd
import sys

# 注意,可能出现目录与章节名不一致、没有目录、目录前出现章标题的情况,需要手动调整
fileList=os.listdir('all txt')
outfileList=os.listdir('outputtxt')
title=['董事会报告','董事局报告','经营情况讨论与分析','经营层讨论与分析','管理层讨论与分析','管理层分析与讨论','董事会工作报告','董事局工作报告']
nexttitle=['监事会工作报告\n','监事会工作报告 \n','监事会报告 \n','重要事项 \n','公司治理 \n','监事会报告\n','重要事项\n','公司治理\n']

def exetract(fileName):
    with open('all txt\\'+fileName,'r',encoding='utf-8') as f:
        text=f.read()
        minindex1=sys.maxsize
        #找出公司经营信息所在章节的章节名
        for i in range(len(title)):        
            #避免第一次出现标题是在目录
            if text.find(title[i])!= -1 and text[text.find(title[i])+len(title[i])] not in ['“','。','分','一','中','关','之','》','"','—','”','第'] and text.find(title[i]) < minindex1:
                minindex1=text.find(title[i])
                topic=title[i]
                continue
            elif text.find(title[i],text.find(title[i])+1)!= -1 and text.find(title[i]) < minindex1:
                minindex1=text.find(title[i])
                topic=title[i]
        splittext=text.split(topic)
        for ind,j in enumerate(splittext[1:]):
            if j[0:2]==' \n' or j[0]=='\n' or j[0]==' ' or j[0]=='	':
                result=''
                for k in range(ind+1,len(splittext[1:])+1):
                    result=result+splittext[k]
                break
            else:
                continue
        minindex2=sys.maxsize
        for k in range(len(nexttitle)):
            if result.find(nexttitle[k])!= -1 and result.find(nexttitle[k])<minindex2:
                minindex2=result.find(nexttitle[k])
                nexttopic=nexttitle[k]
            else:
                continue
        result=result.split(nexttopic)[0]
        with open('outputtxt\\'+fileName,'w',encoding='utf-8') as w:
            #result=result.replace('\n','')#删除换行符
            w.write(result)
            w.close()
        print(fileName+'完成')
# 下方需要根据个人数据情况,调用exetract(函数)遍历全部年报文本
for i in fileList:
	exetract(i)

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ryo_Yuki

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值