题目描述
链接:https://ac.nowcoder.com/acm/contest/3004/H
来源:牛客网
合数是指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
牛牛最近在研究“k合因子数”,所谓“k合数”是指一个数的所有因子中,是合数的因子共有k个。
例如20的因子有1,2,4,5,10,20,其中4,10,20为合数,它有3个合数因子,就称20是一个 “3合因子数”
牛牛想要知道1~n中给定k的情况下k合因子数的数目。
输入描述:
第一行输入两个数字n,m(1 \leq n,m \leq 10^5)(1≤n,m≤10 5)表示范围以及查询“k”的数目
接下来m行,每行一个正整数k(1 \leq k \leq n)(1≤k≤n)查询k合因子数的数目。
输出描述:
一行一个数字,表示k合因子数的数目
示例
输入
10 5
1
2
3
4
5
输出
4
1
0
0
0
思路
这道题很明显是先找出合数,再找到他们的合因子数,如果用一般方法写一定会超时,所以这一题主要是用了埃氏筛法。
埃氏筛法是一种可以快速找出区间里的素数的筛法,因为每个合数可以被分解为几个素数的乘积,所以我们只要把素数的倍数全部筛去剩下的就全都是素数了,反之我们也可以很快的找出合数。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int x=1e5+5;
int main()
{
int er[x]={0},ji[x]={0};
int n,k;
cin>>n>>k;
for(int i=2;i<=n;i++) //因为2是素数我们从2开始。
{
if(er[i]==0) //如果是素数。
{
for(int j=i*2;j<=n;j+=i)
{
er[j]=1; //标记合数的位置。
}
}
else //找到合数。
{
for(int j=i;j<=n;j+=i) //合数的倍数一定有这个合数为因子,一个一个的加。
{
ji[j]++;
}
}
}
int jishu[x];
for(int i=2;i<=n;i++) //打表如果直接写在循环里会超时。
{
jishu[ji[i]]++;
}
while(k--)
{
int s;
cin>>s;
cout<<jishu[s]<<endl;
}
}