题目描述
合数是指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
牛牛最近在研究“k合因子数”,所谓“k合数”是指一个数的所有因子中,是合数的因子共有k个。
例如20的因子有1,2,4,5,10,20,其中4,10,20为合数,它有3个合数因子,就称20是一个 “3合因子数”
牛牛想要知道1~n中给定k的情况下k合因子数的数目。
输入描述:
第一行输入两个数字n,m(1≤n,m≤10 5)表示范围以及查询“k”的数目
接下来m行,每行一个正整数k(1≤k≤n)查询k合因子数的数目。
输出描述:
一行一个数字,表示k合因子数的数目
示例1
输入
10 5
1
2
3
4
5
输出
4
1
0
0
0
说明
1~10的范围内
1合因子数有:4,6,9,10,共4个
2合因子数有:8,共1一个
思路:一定要b[arr[i]]++,否者要超时
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn=1e5+5;
ll n,m;
ll prime[maxn];
ll arr[maxn];
ll b[maxn];
void eratos(){
for(ll i=0;i<1e5+1;i++){
prime[i]=true;
}
prime[0]=prime[1]=false;
for(ll i=2;i*i<=1e5+1;i++){
if(prime[i]){
ll j=i+i;
while(j<=1e5+1){
prime[j]=false;
j=j+i;
}
}
}
return;
}
int main(){
cin >> n >> m;
eratos();
for(ll i = 1; i <= n; i++){
for(ll j = 1; j*j <= i; j++){
if(i%j==0){
if(prime[j]==0&&j!=1&&j!=2){
arr[i]++;
}
if(j*j!=i&&prime[i/j]==0&&i/j!=1&&i/j!=2){
arr[i]++;
}
}
}
b[arr[i]]++;
}
for(ll i = 0; i < m; i++){
ll k;
cin >> k;
cout << b[k] << endl;
}
return 0;
}