牛牛的k合因子数

题目描述
合数是指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
牛牛最近在研究“k合因子数”,所谓“k合数”是指一个数的所有因子中,是合数的因子共有k个。
例如20的因子有1,2,4,5,10,20,其中4,10,20为合数,它有3个合数因子,就称20是一个 “3合因子数”
牛牛想要知道1~n中给定k的情况下k合因子数的数目。
输入描述:

第一行输入两个数字n,m(1≤n,m≤10 5)表示范围以及查询“k”的数目
接下来m行,每行一个正整数k(1≤k≤n)查询k合因子数的数目。

输出描述:

一行一个数字,表示k合因子数的数目

示例1

输入
10 5
1
2
3
4
5
输出
4
1
0
0
0

说明
1~10的范围内
1合因子数有:4,6,9,10,共4个
2合因子数有:8,共1一个
思路:一定要b[arr[i]]++,否者要超时
代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn=1e5+5;
ll n,m;
ll prime[maxn];
ll arr[maxn];
ll b[maxn];
void eratos(){
    for(ll i=0;i<1e5+1;i++){
        prime[i]=true;
    }
    prime[0]=prime[1]=false;
    for(ll i=2;i*i<=1e5+1;i++){
        if(prime[i]){
             ll j=i+i;
             while(j<=1e5+1){
                 prime[j]=false;
                 j=j+i;
             }

        }
    }
    return;
}
int main(){
	cin >> n >> m;
	eratos();
	for(ll i = 1; i <= n; i++){
		for(ll j = 1; j*j <= i; j++){
			if(i%j==0){
				if(prime[j]==0&&j!=1&&j!=2){
					arr[i]++;
				} 
				if(j*j!=i&&prime[i/j]==0&&i/j!=1&&i/j!=2){
					arr[i]++;
				} 
			}
		}
		b[arr[i]]++;
	} 
	for(ll i = 0; i < m; i++){
		ll k;
		cin >> k;
		cout << b[k] << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值