- 博客(29)
- 收藏
- 关注
原创 用了驭码 CodeRider 2.0,感觉程序员成为超级个体的时代离我们很近了
《CodeRider 2.0:一款融合AI与DevOps的高效开发工具》 摘要:CodeRider 2.0是由极狐Gitlab推出的AI+DevOps开发工具,其核心优势在于性能优异、全流程覆盖和灵活配置。工具深度集成VSCode/JetBrains,提供快捷命令支持代码修改、解释等常见需求,并首创本地/云端模型自由切换功能,兼顾响应速度与隐私安全。其特色功能包括知识库挂载(支持20种语料格式)、Gitlab原生DevOps能力对接,以及智能代码修复时的动态扫描效果。测试显示模型推理速度快,HTML生成等任
2025-06-12 02:48:35
681
3
原创 NVIDIA高级辅助驾驶安全白皮书技术解析:构建安全未来的系统性实践
NVIDIA近期发布的《高级辅助驾驶安全报告》系统性地阐述了其技术框架与安全理念。这份 25 页的报告并非简单的技术堆砌,而是从底层硬件到软件生态、从开发流程到行业标准,构建了一套完整的高级辅助驾驶安全体系。作为全球AI计算领域的领军者,NVIDIA 在这份报告中展现了其对安全问题的深度思考与实践经验。
2025-04-29 21:32:35
868
原创 Nvidia DOCA DPA All To All 应用的简单示例
数据处理过程会大致经过以下环节,接口获取到信号,从磁盘地址读取数据加载到内存,CPU 拿到数据后开始计算,执行写入。这一传统环节中,从 CPU 发出指令到设备,到设备传输到 CPU(内存),再到 CPU 计算处理后写入内存,再返回设备接口,这每一个环节都是存在开销的,而高频交易要求低延迟,如果以上这些环节可以做优化,那么可以一定程度上提高数据处理效率。
2025-03-12 15:46:18
908
原创 体验 Nvidia Isaac Sim 仿真平台 in Container
二是对于 Container 模式的使用指导过少,UI 条件下可以通过阅读菜单或图形功能进行使用,而 Container 服务模式下,必要的命令引导和 example 是不能少的,我在找使用方法时花费了很大精力,最后才弄明白大概要怎么使用,这其中还尝试过 ROS 虚拟做面等,总之总结起来就是 UI 是好用的,但 Container 使用起来难度高了好几个级别,差点放弃。在进行物理仿真时,即使在球体数量增加到80个的情况下,仿真的帧率依然能够保持在较高水平,这在传统的CPU计算中是难以实现的。
2024-11-21 17:59:36
6125
23
原创 昇思25天学习打卡营第25天|LSTM CRF 序列标注
序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。输入序列清华大学座落于首都北京输出标注BIIIOOOOOBI如上表所示,清华大学和北京是地名,需要将其识别,我们对每个输入的单词预测其标签,最后根据标签来识别实体。
2024-07-31 14:34:59
323
原创 昇思25天学习打卡营第24天|Pix2Pix实现图像转换
Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。和。传统上,尽管此类任务的目标都是相同的从像素预测像素,但每项都是用单独的专用机器来处理的。
2024-07-31 14:33:43
385
原创 昇思25天学习打卡营第23天|GAN生成图像
MNIST手写数字数据集是NIST数据集的子集,共有70000张手写数字图片,包含60000张训练样本和10000张测试样本,数字图片为二进制文件,图片大小为28*28,单通道。图片已经预先进行了尺寸归一化和中心化处理。本案例将使用MNIST手写数字数据集来训练一个生成式对抗网络,使用该网络模拟生成手写数字图片。
2024-07-31 14:32:03
470
原创 昇思25天学习打卡营第22天|Diffusion扩散模型
如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。Diffusion对于图像的处理包括以下两个过程:我们选择的固定(或预定义)正向扩散过程qqq:它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声一个学习的反向去噪的扩散过程pθp_\thetapθ。
2024-07-31 14:30:42
344
原创 昇思25天学习打卡营第21天|DCGAN生成漫画头像
判别器由分层的卷积层、BatchNorm层和LeakyReLU激活层组成。输入是3x64x64的图像,输出是该图像为真图像的概率。生成器则是由转置卷积层、BatchNorm层和ReLU激活层组成。DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adversarial Networks)是GAN的直接扩展。不同之处在于,DCGAN会分别在判别器和生成器中使用卷积和转置卷积层。本教程将使用动漫头像数据集来训练一个生成式对抗网络,接着使用该网络生成动漫头像图片。
2024-07-31 14:29:24
355
原创 昇思25天学习打卡营第20天|CycleGAN图像风格迁移互换
CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。
2024-07-31 14:27:40
314
原创 昇思25天学习打卡营第19天|基于MobileNetv2的垃圾分类
MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数 α和分辨率系数 β使模型满足不同应用场景的需求。
2024-07-31 14:26:05
279
原创 昇思25天学习打卡营第18天|基于MindSpore的红酒分类
K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。KNN的三个基本要素:K值,一个样本的分类是由K个邻居的“多数表决”确定的。K值越小,容易受噪声影响,反之,会使类别之间的界限变得模糊。
2024-07-31 14:24:24
310
原创 昇思25天学习打卡营第17天|基于MindNLP+MusicGen生成音乐
与传统方法不同,MusicGen采用单个stage的Transformer LM结合高效的token交织模式,取消了多层级的多个模型结构,例如分层或上采样,这使得MusicGen能够生成单声道和立体声的高质量音乐样本,同时提供更好的生成输出控制。MusicGen不仅能够生成符合文本描述的音乐,还能够通过旋律条件控制生成的音调结构。MusicGen是来自Meta AI的Jade Copet等人提出的基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本,相关研究成果参考论文《
2024-07-31 14:22:49
295
原创 昇思25天学习打卡营第16天|VisionTransformer
近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。
2024-07-31 14:21:14
319
原创 昇思25天学习打卡营第15天|SSD目标检测
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法。使用Nvidia Titan X在VOC 2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(mean Average Precision)以及59FPS;对于512x512的网络,达到了76.9%mAP ,超越当时最强的Faster RCNN(73.2%mAP)。具体可参考论文[1]。
2024-07-31 14:19:43
298
原创 昇思25天学习打卡营第14天|Shufflenet图像分类
ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。
2024-07-31 14:17:58
406
原创 昇思25天学习打卡营第13天|ResNet50图像分类
ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。
2024-07-31 14:15:23
242
原创 昇思25天学习打卡营第12天|ResNet50迁移学习
数据集的结构如下:在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。下载案例所用到的,数据集中的图像来自于ImageNet,每个分类有大约120张训练图像与30张验证图像。使用download接口下载数据集,并将下载后的数据集自动解压到当前目录下。
2024-07-31 14:12:10
285
原创 昇思25天学习打卡营第11天|FCN图像语义分割
FCN主要用于图像分割领域,是一种端到端的分割方法,是深度学习应用在图像语义分割的开山之作。通过进行像素级的预测直接得出与原图大小相等的label map。因FCN丢弃全连接层替换为全卷积层,网络所有层均为卷积层,故称为全卷积网络。全卷积神经网络主要使用以下三种技术:卷积化(Convolutional)使用VGG-16作为FCN的backbone。VGG-16的输入为224*224的RGB图像,输出为1000个预测值。VGG-16只能接受固定大小的输入,丢弃了空间坐标,产生非空间输出。
2024-07-02 18:16:47
973
原创 昇思25天学习打卡营第10天|使用静态图加速
AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。
2024-07-02 17:56:53
310
原创 昇思25天学习打卡营第9天|保存与加载
上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。
2024-07-02 17:50:19
186
原创 昇思25天学习打卡营第8天|模型训练
从网络构建中加载代码,构建一个神经网络模型。超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。wt1wt−η1n∑x∈B∇lxwtwt1wt−ηn1x∈B∑∇lxwt公式中,nnn是批量大小(batch size),ηηη是学习率(learning rate)。另外,wtw_{t}wt为训练轮次ttt中的权重参数,
2024-07-02 17:46:43
582
原创 昇思25天学习打卡营第7天|函数式自动微分
神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。
2024-07-02 17:42:24
462
原创 昇思25天学习打卡营第6天|网络构建
当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。construct意为神经网络(计算图)构建,相关内容详见使用静态图加速。
2024-07-02 17:35:59
322
原创 昇思25天学习打卡营第5天|数据变换 Transforms
通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。下面分别对其进行介绍。
2024-07-02 17:28:44
620
原创 昇思25天学习打卡营第3天|张量
张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在n维空间内,有nr个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。r称为该张量的秩或阶(与矩阵的秩和阶均无关系)。张量是一种特殊的数据结构,与数组和矩阵非常相似。张量()是MindSpore网络运算中的基本数据结构,本教程主要介绍张量和稀疏张量的属性及用法。
2024-07-02 17:25:25
417
原创 昇思25天学习打卡营第4天|数据集
数据是深度学习的基础,高质量的数据输入将在整个深度神经网络中起到积极作用。MindSpore提供基于Pipeline的,通过和实现高效的数据预处理。其中Dataset是Pipeline的起始,用于加载原始数据。提供了内置的文本、图像、音频等数据集加载接口,并提供了自定义数据集加载接口。此外MindSpore的领域开发库也提供了大量的预加载数据集,可以使用API一键下载使用。本教程将分别对不同的数据集加载方式、数据集常见操作和自定义数据集方法进行详细阐述。
2024-07-02 17:22:40
324
原创 昇思25天学习打卡营第1天|初学入门-基本介绍
昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。昇思MindSpore作为全场景AI框架,所支持的有端(手机与IOT设备)、边(基站与路由设备)、云(服务器)场景的不同系列硬件,包括昇腾系列产品、英伟达NVIDIA系列产品、Arm系列的高通骁龙、华为麒麟的芯片等系列产品。
2024-06-26 10:33:50
974
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人