知识学习——Hadoop MapReduce开发入门

本文介绍了Hadoop MapReduce计算模型,包括JobTracker和TaskTracker的角色。MapReduce任务由Job初始化,分为Map和Reduce阶段。Map函数处理输入,Reduce函数处理中间结果。文章详细讲解了MapReduce的split、Map、Shuffle和Reduce四个执行阶段。
摘要由CSDN通过智能技术生成

MapReduce计算模型

在Hadoop中,用于执行MapReduce任务的机器有两份角色:JobTracker和TaskTracker。JobTracker用于管理和调度工作,TaskTracker是用来执行工作的,一个Hadoop集群中只有一个JobTracker。
这里写图片描述

MapReduce Job

在Hadoop中,每个MapReduce任务会被初始化一个Job。每个Job可以分为Map阶段和Reduce阶段,可用Map和Reduce函数来表示。
Map函数接受一个<key,value>形式的输入,产生一个同样为<key,value>形式的中间输出,Hadoop将具有相同Key值的value集合到一起传递给Reduce函数,Reduce函数接受了一个如<key,list of value>形式的输入,Reduce对此进行处理,输出<key,value>形式的数据。

MapReduce 的四个阶段

  • Split阶段

  • Map阶段

  • Shuffle阶段

  • Reduce阶段

1、split阶段

这里写图片描述

2、Map阶段

这里写图片描述

3、Shuffle阶段

这里写图片描述

4、Reduce阶段

这里写图片描述

5、总结

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值