Problem C: 铺地砖——迭代小算法

搜了一下百度,网上很多人都对这题没有深入下去进行解释,大多数只是通过枚举法就得出结论,因此我写了这篇博客讲讲我对这个题目的理解。

首先这道题目通过枚举法可以发现从第四项开始,方法总数就是前三项的和了,然后不断重复迭代就可以得出结论。

但是这又是为什么呢?这其中要如何去解释呢?

我就简单谈谈我的理解(我也是新手,大佬勿喷),设a[n]为铺满长方形1×n的方法数。

首先,自第四项开始,n就是大于等于4了,也就是说,我们可以先将n分成1和n-1,然后a[n-1]我们之前已经求出来,因此这边就直接拿过来加,

再之后我们将n分成2和n-2,这里要理解一下为什么不会和上述产生重复,因为我们主要针对的主体是前面那部分长度,只要前面那部分长度不一样,那么我们通过a[n-1]和a[n-2]加起来的情况就不会重复(这是这个题目的关键所在,不懂的可以在纸上画一下马上就能明白了),

之后就是分成3和a[n-3],然后再加上a[n-3],这个时候就不需要分成4和a[n-4]了,因为,小瓷砖最长为3,如果要变成4,必然涉及到俩块以上瓷砖的组合,这就会与上述三种情况重复。

因此,得出核心式子,a[n]=a[n-1]+a[n-2]+a[n-3];

Problem C: 铺地砖

Time Limit: 1 Sec Memory Limit: 64 MB
Submit: 5332 Solved: 1985

Description

元旦过去了,新年大酬宾活动也已经告一段落了。陈盖历望着堆在仓库的瓷砖,很无聊的他把这些瓷砖裁成很多1X1 1X2 1X3的小瓷砖,然后他把这些小瓷砖排在地上画的一个1*n的长方形里。问铺满这个长方形共有多少种方法?

Input

首先输入一个整数T,表示有T组测试数据 然后是T行,每行输入1个正整数n(n<=50)

Output

对于每个n输出铺的方法种数

Sample Input

3
1
2
3

Sample Output

1
2
4

代码如下:

#include<stdio.h>
int main()
{
	int a[51]={0,1,2,4};
	int n,i;
	for(i=4;i<=50;i++)
	{
		a[i]=a[i-1]+a[i-2]+a[i-3];
	}
	while(scanf("%d",&n)!=EOF)
	{
		while(n--)
		{
			int x;
			scanf("%d",&x);
			printf("%d\n",a[x]);
		}	
	}
}

实现很简单,这里就不加注释了。。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值