作者: Phill King
邮箱: phillking1982@163.com
原创文章,转载请注明出处。
题目地址:2411 -- Mondriaan's Dream
问题简单描述:
在一个N行M列的格子里,现有1*2大小的瓷砖,可以横着或者竖着铺。问一共有多少种方案,可以将整个N*M的空间都填满。
示例:
N=2 ,M=4 一共5种方案
N = 2,M = 3; 一共3种方案
问题分析:
1. 因为每块瓷砖的面积是2,所以总面积M*N必须是偶数才能铺满。如果是奇数,则方案数显然为0.
2. 分析一下覆盖的状态,用二进制来代表具体覆盖的方案: