D3 深搜(皇后问题)

八皇后问题

题目描述

在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方。

输入描述

(无)

输出描述

按给定顺序和格式输出所有八皇后问题的解(见样例)。

提示:按行进行的搜索

样例输出
No. 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No. 2
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
……
No. 92
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
代码 
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
bool a[10][10],vis[10][10];//a是棋盘,vis是标记 
int cnt;//方案数 
bool cheak(int x,int y){
	for(int i=1;i<=8;i++){//检查同一列 
		if(a[i][y]==1){
			return 0;
		}
	}
	for(int i=x-1,j=y-1;i>=1&&j>=1;i--,j--){//检查左对角线 
		if(a[i][j]==1){
			return 0;
		}
	}
	for(int i=x-1,j=y+1;i>=1&&j<=8;i--,j++){//检查右对角线 
		if(a[i][j]==1){
			return 0;
		}
	}
	return 1; 
}
void dfs(int x){//按行搜索:x行 
	if(x==9){//前面都看过了(8行8列)
		++cnt;
		printf("No. %d\n",cnt); //输出格式 
		for(int i=1;i<=8;i++){
			for(int j=1;j<=8;j++){
				cout<<a[i][j]<<" ";
			}
			cout<<endl;
		} 
	}
	for(int i=1;i<=8;i++){
		if(cheak(x,i)){
			a[x][i]=1;//放皇后 
			dfs(x+1);
			a[x][i]=0;//回溯清零 
		}
	} 
}
int main(){
	dfs(1);
	return 0;
}

N皇后

题目描述

检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列只有一个,每条对角线上至多有一个棋子。

  

上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:
行号:1  2  3  4  5  6
列号:2  4  6  1  3  5
这只是跳棋放置的一个解。请编一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。
特别注意: 对于更大的N(棋盘大小N x N),你的程序应当改进得更有效。不要事先计算出所有解然后只输出(或是找到一个关于它的公式),这是作弊。

输入描述

一个数字N (6 < = N < = 13) 表示棋盘是N x N大小的。

输出描述

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。 

样例输入
6
样例输出
2 4 6 1 3 5 
3 6 2 5 1 4 
4 1 5 2 6 3 
4
提示

【数据范围】
对于100% 的数据,6≤n≤13。

代码 
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int a[20];//a是行,vis是标记 
int col[20],zs[40],ys[40];//col列,zs左对角线 ys右对角线 
int cnt,n;//方案数
void dfs(int x){//按行搜索:x行 
	if(x>n){//前面都看过了(n行n列)
		++cnt;
		if(cnt<=3){//前三个 
			for(int i=1;i<=n;i++){
				cout<<a[i]<<" ";
			} 
			cout<<endl;
		} 
		
	}
	for(int i=1;i<=n;i++){
		if(col[i]==0&&zs[x-i+n]==0&&ys[x+i]==0){
			a[x]=i;//放皇后 
			col[i]=1;
			zs[x-i+n]=1;
			ys[x+i]=1;
			dfs(x+1);
			a[x]=0;//回溯清零 
			col[i]=0;
			zs[x-i+n]=0;
			ys[x+i]=0;
		}
	} 
}
int main(){
	cin>>n;
	dfs(1);
	cout<<cnt;
	return 0;
}

棋盘问题

题目描述

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放 k 个棋子的所有可行的摆放方案 C。

输入描述

输入含有多组测试数据。

每组数据的第一行是两个正整数n,k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 (n≤8,k≤n) 当为−1 −1时表示输入结束。

随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域,. 表示空白区域(数据保证不出现多余的空白行或者空白列)。

输出描述

对于每一组数据,给出一行输出,输出摆放的方案数目C(数据保证C<2^31)。

样例输入
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
样例输出
2
1
代码
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int a[20];//a是行,vis是标记 
int col[20];//col列 
int cnt,n,k;//方案数
char c[10][10];
void dfs(int h,int w){//按行搜索:h行 
	if(w==k+1){
		cnt++;
		return ;
	}
	if(h==n+1){//前面都看过了(n行n列)
		return ;
	}
	for(int i=1;i<=n;i++){//遍历列 
		if(col[i]==0&&c[h][i]=='#'){
			col[i]=1;
			dfs(h+1,w+1);
			col[i]=0;
		}
	} 
	dfs(h+1,w);
}
int main(){
	while(cin>>n>>k){
		if(n==-1&&k==-1){
			break;
		}
		cnt=0;
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				cin>>c[i][j];
			}
		}
		dfs(1,1);
		cout<<cnt<<endl;
	}
	return 0;
}

骑士遍历初级版(小数据)

题目描述

如图,从左下角A点出发,马只能向右走,根据马走日字的规则,究竟如何走才能到达右上角B点?

输入描述

两个整数x、y,代表右上角B点的坐标,A点默认为(1,1),x,y<=50

输出描述

马走的路径方向,例如上图路径可表示为4 3 2 4 1 4,但注意,为了保证结果唯一,程序中马尝试各方向的顺序如上图,依次为1、2、3、4.因此上图的正确答案为3 2 4 1 4 4,如果无路可走,则输出-1

样例输入
5 5
样例输出
4 1 4 4
代码

暂无

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值