- 博客(47)
- 收藏
- 关注
原创 计算性能——动手学深度学习12
符号式编程代码通常只在完全定义了过程之后才执行计算。这个策略被多个深度学习框架使用,包括Theano和TensorFlow(后者已经获得了命令式编程的扩展)。一般包括以下步骤:定义计算流程将流程编译成可执行的程序给定输入,调用编译好的程序执行这将允许进行大量的优化。首先,在大多数情况下,我们可以跳过Python解释器。从而消除因为多个更快的GPU与单个CPU上的单个Python线程搭配使用时产生的性能瓶颈。其次,编译器可以将上述代码优化和重写为print((12)(34))甚至。
2025-11-27 17:01:44
656
原创 优化算法——动手学深度学习11
凸集:集合内 任意两点之间连线 的整条线段 皆包含在该集合内。交集保持凸性:凸集的交集是凸的并集不保持凸性:凸集的并集不一定是凸的凸函数:函数值 ≤ 弦的值(弦在函数上方,即 线段在图像上方)。凸函数的局部极小值也是全局极小值凸函数的下水平集是凸的(碗形山谷的所有海拔低于100米的区域,肯定是一片连起来的、中间没有空洞的洼地)判断函数是否 “凸”:如果凸的话→二阶导≥0 / 半正定一维,一元函数 f(x):“加速度”二阶导数 f''(x)必须永远 >= 0多维。
2025-10-23 19:58:29
1094
原创 Transformer注意力机制——动手学深度学习10
基于(10.2.7)''' Nadaraya-Watson 核回归模型,实现基于注意力机制的核回归实现Nadaraya-Watson核回归的非参数方法,通过注意力机制对输入数据进行加权平均使用高斯核函数来计算查询与键之间的相似度,并将这些相似度作为权重对值进行加权求和'''# 可学习的参数 (高斯核的带宽参数),即 查询与键间距离要乘以的权重'''queries : 查询输入 (n_query,),有n_query个查询。
2025-10-14 17:46:02
521
原创 现代循环神经网络——动手学深度学习9
隐状态的初始化函数与(循环神经网络——动手学深度学习8-CSDN博客5. 循环神经网络的从零开始实现)中定义的函数一样,此函数返回一个形状为(批量大小,隐藏单元个数)的张量,张量的值全部为零。# 2、定义训练'''初始化GRU的隐藏状态功能:返回初始的隐藏状态(一个全零张量),形状为 (batch_size, num_hiddens)包括:输入到隐藏层、隐藏层到隐藏层、隐藏层到输出层的权重以及相应的偏置权重使用小随机数初始化,偏置初始化为零batch_size : 批量大小。
2025-08-08 17:22:13
817
2
原创 python 给别人提供自己的运行环境
在 Python 开发中,向他人提供自己的运行环境通常涉及导出当前环境的配置信息,以便对方可以在其机器上复现相同的依赖和设置。会导出当前虚拟环境中所有包的精确版本。如果使用全局 Python 环境,可能会包含不必要的包。1)打开Anaconda Prompt,查看已经创建的所有虚拟环境。在原环境中运行以下命令,生成。,直接运行以下命令生成。环境打包为压缩文件。
2025-06-24 14:37:35
981
原创 深度学习计算 & 卷积神经网络——动手学深度学习5~6
将输入数据作为其前向传播函数的参数。通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。存储和访问前向传播计算所需的参数。根据需要初始化模型参数。在下面的代码片段中,我们从零开始编写一个块。它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。注意,下面的MLP类继承了表示块的类。
2025-06-18 10:12:27
1400
原创 PyTorch - Tensor 笔记
的值始终同步,因为它们共享相同的内存。这种特性在需要高效数据传递时非常有用,但需要谨慎操作以避免数据竞争。在下面的例子中,使用逗号来表示一个具有5个元素的元组,其中每个元素都是按元素操作的结果。)都可以被升级为按元素运算。我们可以在同一形状的任意两个张量上调用按元素操作。, 另一个与 . 略有不同的 Tensor Joining 运算符。对于任意具有相同形状的张量, 常见的标准算术运算符(缺点:因为是直接修改原数据,会丢失历史记录,因此。若想指定生成其他数据类型的张量,可以通过。对输入张量中的每个元素。
2025-04-16 14:59:08
1242
原创 Git 使用笔记
或者按住shift加鼠标右键有个 `在此处打开Powershell窗口`,都可以直接 使用git命令。在你创建仓库文件夹内鼠标右键有个 Git Bash Here打开就好,
2025-03-19 14:15:06
533
原创 工业相机选型(自用笔记)
1)目标是运动的则优先考虑。2)需要高质量的图像,如进行尺寸测量,可以考虑CCD。(因为在小尺寸的传感器里,CCD的成像质量还是要优于CMOS的。1)拍摄目标是静态不动的,为了节约成本可考虑使用。2)需要高采集速度,可以考虑CMOS相机。(因为CMOS的采集速度会优于CCD。
2024-10-17 14:05:10
2414
3
原创 高数/线性代数知识补充---矩阵、行列式、数学符号、内外积
高数知识补充笔记:矩阵计算、行列式计算、数学符号及读法&数学运算符号及含义等向量与矩阵的内外积。
2024-07-16 17:08:14
5122
原创 工业视觉笔记快捷搜索---目录
工业视觉需要时可抄的代码---持续更新 一(1-28)目录1、批量访问图片,等待键盘1.2 批量访问图像(不用提前批量重命名)--访问文件夹底下所有同类型图像1.2.1 单独只有批量访问的1.3 批量访问图像(也是不用提前批量重命名)--访问文件夹底下所有同类型图像1.4 批量访问图像(也是不用提前批量重命名)--访问文件夹底下所有同类型图像1.5 批量访问图像(不用提前批量重命名)--单张和批量前面路径相同(jiefeng)1.6 批量访问图像(不用提前批量重命名)--单张和批量前面路径相同(bioake
2024-06-21 10:04:31
1316
原创 Python基础笔记补充
直接 import xxx 时,每次调用库里接口时都要在接口名前加个 xxx.接口名。使用 from aaa import xxx 时,每次调用该接口时可直接 xxx。
2024-05-28 17:55:28
419
原创 C++ 知识补充
向量(vector)是一个封装了动态大小数组的顺序容器(SequenceContainer)。跟任意其它类型容器一样,它能够存放各种类型的对象。可以简单的认为,向量是一个能够存放任意类型的动态数组。C++中map提供的是一种键值对容器,里面的数据都是成对出现的,如下图:每一对中的第一个值称之为关键字(key),每个关键字只能在map中出现一次;第二个称之为该关键字的对应值。
2024-01-27 14:21:51
1961
原创 C++学习/复习补充记录 --- 递归、回溯
是一种算法,形式上表现为直接或间接的;是一种算法,它是用的。回溯是递归的副产品,有递归就会有回溯。。
2023-07-06 17:11:23
434
1
原创 Python OpenCV Tesseract 文本检测(代码+注释)
环境:Pycharm + python3.7 +opencv使用Tesseract再Python OCR中使用opencv进行文本检测import cv2import pytesseractpytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-OCR\\tesseract.exe'img = cv2.imread('2.jpg')img = cv2.cvtColor(img, cv2.COLOR_B.
2023-01-13 15:29:41
430
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅