实现一个函数,检查一棵二叉树是否为二叉搜索树。
leetCode题目链接:https://leetcode-cn.com/problems/legal-binary-search-tree-lcci/
二叉搜索树性质:根节点的值大于左子树所有节点的值,小于右子树所有节点的值。
一般二叉搜索树的遍历分成以下几种:
前序遍历:根结点 —> 左子树 —> 右子树
中序遍历:左子树—> 根结点 —> 右子树
后序遍历:左子树 —> 右子树 —> 根结点
层次遍历:从上到下,从左到右。
第一个思路
结合定义我们知道只要在中序遍历时判断值是不是连续的升序排列即可。
具体解法可以参考上面题目链接中的题解,大部分代码都是以这个思路去解题的。
第二个思路
但是博主作为一个小白,并不熟悉树的遍历
第一个想法是从定义入手,去判断子节点和当前节点的值
乍一看这样的做法没什么问题,其实是有问题的,看下图。
在判断 ⑤ 这个节点时没有问题,但是在判断 ③ 这个节点时,虽然满足左子节点小于当前节点、右子节点大于当前节点,但是 6 却大于 5 ,也就是右子节点大于了右父节点,出现了问题。
所以这个思路,当时博主已经没有向下去思考了,因为这明显不符合做算法的一个思路。
然后博主继续思考,那么以当前节点与父节点去比较呢?
看下面的图:在当前节点与父节点比较时,需要找出最小右父节点,和最大左父节点,也就是边界。
从上图举例
最终使用递归办法实现整个算法,实际上应用了层次遍历
代码如下
class Solution {
public:
bool isValidBST(TreeNode* root, TreeNode* pre_root_left = nullptr, TreeNode* pre_root_right = nullptr, bool is_left = false) {
if (root == nullptr)
return true;
if (pre_root_right != nullptr && pre_root_right->val <= root->val)
return false;
else if (pre_root_left != nullptr && pre_root_left->val >= root->val)
return false;
return isValidBST(root->left, pre_root_left, root) & isValidBST(root->right, root, pre_root_right);
}
};