小Q最近阅读了SA-IS算法在线性时间内构造后缀数组的相关论文,面对任何字符串题,都可以想出线性时间的算法。
小T在经历过二分图匹配事件后,再也不相信小Q所说的话。面对小Q,小T又给出了一道字符串题:
给定一个长度为 nn的小写字符串 S[1..n]S[1..n],设 sufisufi表示以 ii 为开始的后缀,即 S[i..n]S[i..n]。
记 |X||X|为字符串 XX的长度,对于两个字符串 XX和 YY,定义 XX的字典序比 YY小,当且仅当存在非负整数 k(k≤min(|X|,|Y|))k(k≤min(|X|,|Y|))使得 XX的前 kk个字符与 YY的前 kk个字符对应相同,并且要么满足 |X|=k|X|=k且 |Y|>k|Y|>k,要么满足 k<min(|X|,|Y|)k<min(|X|,|Y|)且 XX的第 k+1k+1个字符比 YY的第 k+1k+1个字符小。例如aa的字典序比aaa小,ab的字典序比ba小。
请对每个 i(1≤i<n)i(1≤i<n),判断 sufisufi和 sufi+1sufi+1的字典序大小关系。
只会吹牛的小Q又不会做了,所以他再一次向你紧急求助。请写一个程序,判断相邻两个后缀的大小关系。
Input第一行包含一个正整数
T(1≤T≤10)T(1≤T≤10),表示测试数据的组数。
小T在经历过二分图匹配事件后,再也不相信小Q所说的话。面对小Q,小T又给出了一道字符串题:
给定一个长度为 nn的小写字符串 S[1..n]S[1..n],设 sufisufi表示以 ii 为开始的后缀,即 S[i..n]S[i..n]。
记 |X||X|为字符串 XX的长度,对于两个字符串 XX和 YY,定义 XX的字典序比 YY小,当且仅当存在非负整数 k(k≤min(|X|,|Y|))k(k≤min(|X|,|Y|))使得 XX的前 kk个字符与 YY的前 kk个字符对应相同,并且要么满足 |X|=k|X|=k且 |Y|>k|Y|>k,要么满足 k<min(|X|,|Y|)k<min(|X|,|Y|)且 XX的第 k+1k+1个字符比 YY的第 k+1k+1个字符小。例如aa的字典序比aaa小,ab的字典序比ba小。
请对每个 i(1≤i<n)i(1≤i<n),判断 sufisufi和 sufi+1sufi+1的字典序大小关系。
只会吹牛的小Q又不会做了,所以他再一次向你紧急求助。请写一个程序,判断相邻两个后缀的大小关系。
每组数据第一行包含一个正整数 n(2≤n≤1000000)n(2≤n≤1000000),表示字符串 SS的长度。
第二行包含一个长度为 nn的小写字符串 SS。Output对于每组数据,输出一行 n−1n−1个字符,第 ii个字符表示 sufisufi和 sufi+1sufi+1的大小关系,若 sufi<sufi+1sufi<sufi+1,输出 <<,否则输出 >>,显然不存在相等关系。Sample Input
1 17 quailtyacmbestacmSample Output
<><<<<><<><<<><<
考点:思维题
#include<cstdio>
#include<cstring>
int main()
{
int T,n;
scanf("%d",&T);
while(T--&&scanf("%d",&n))
{
char s[1000005];
char a[1000005];
memset(s,0,sizeof(s));
memset(a,0,sizeof(a));
scanf("%s",s);
for(int i=0; i<n; i++){
if(s[i]<s[i+1]) a[i]='<';
else if(s[i]>s[i+1]) a[i]='>';
}
char cur=a[n-1];
for(int i=n-2; i>=0; i--){
if(!a[i]) a[i]=cur;
else cur=a[i];
}
a[n-1]='\0';
printf("%s\n",a);
}
return 0;
}