HDU.5533 Dancing Stars on Me(思维+数学)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/XxxxxM1/article/details/82926592

问题 G: Dancing Stars on Me

时间限制: 1 Sec  内存限制: 128 MB
提交: 95  解决: 49
[提交] [状态] [讨论版] [命题人:admin]

题目描述

The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.
Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length.
The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here,and you just need to check whether the stars can form a regular polygon in this plane.

 

输入

The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n,denoting the number of stars in the sky. Following n lines, each contains 2 integers xi , yi , describe the coordinates of n stars.
1≤T≤300
3≤n≤100
   10000≤xi , yi≤10000
All coordinates are distinct.

 

输出

For each test case, For each test case, please output ”‘YES‘” if the stars can form a regular polygon. Otherwise,output ”‘NO‘” (both without quotes).

 

样例输入

3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0

 

样例输出

NO
YES
NO
#include<bits/stdc++.h>
using namespace std;
#define M(a) memset(a,0,sizeof(a))
#define rp(i,a) for(int i=0;i<a;i++)

struct node{
	int x,y;
}G[120];

bool cmp(node a,node b){
	if(a.x==b.x) return a.y<b.y;
	return a.x<b.x;
}

int main()
{
	int t,n;cin>>t;
	while(t--&&cin>>n)
	{
		M(G);
		rp(i,n)
			cin>>G[i].x>>G[i].y;
        sort(G,G+n,cmp);

        if(n!=4) cout<<"NO"<<endl;
        else if((G[1].y-G[0].y==G[3].y-G[2].y)&&
              (G[3].x-G[1].x==G[2].x-G[0].x)) cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
	}
    return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页