三角形的四心

这篇博客主要介绍了三角形的四个重要中心点:重心、外心、垂心和内心。对于每个中心点,作者详细阐述了它们的定义、坐标性质,并给出了相关证明。此外,还提到了欧拉线和欧拉定理在这些中心点之间的关系。
摘要由CSDN通过智能技术生成

打比赛遇到一道外心的题(HDU - 6206),不去搜板子,根本不会,所以打算总结一下三角形的四心。



给出三角形的三个点 A(x1,y1),B(x2,y2),C(x3,y3);A,B,C A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) ; ∠ A , ∠ B , ∠ C 的对边分别为 a,b,c a , b , c

重心

定义:三条中线的交点。·常用 G G 表示。
这里写图片描述
性质
1. 重心坐标 G(x1+x2+x33,y1+y2+y33) G ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 )

point GravityCenter(point A, point B, point C) {
    double Gx = (A.x + B.x + C.x) / 3;
    double Gy = (A.y + B.y + C.y) / 3;
    return point(Gx, Gy);
}

2. AG=2GD,BG=2GE,CG=2FG A G = 2 G D , B G = 2 G E , C G = 2 F G
3. SAGC=SAGB=SBGC S △ A G C = S △ A G B = S △ B G C
4. GA+GB+GC=0⃗  G A → + G B → + G C → = 0 →
性质4证明:



外心

定义:三条中垂线的交点,常用 O O 来表示。
这里写图片描述
性质
1. 外心坐标:有点复杂,,,
设外心坐标为 O(x0,y0) O ( x 0 , y 0 ) ,外接圆半径为 r r 。那么外接圆的方程就为 ( x x 0 ) 2 + ( y y 0 ) 2 = r 2
由此可得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值