打比赛遇到一道外心的题(HDU - 6206),不去搜板子,根本不会,所以打算总结一下三角形的四心。
给出三角形的三个点 A(x1,y1),B(x2,y2),C(x3,y3);∠A,∠B,∠C A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) ; ∠ A , ∠ B , ∠ C 的对边分别为 a,b,c a , b , c 。
重心:
定义:三条中线的交点。·常用 G G 表示。
性质:
1. 重心坐标 G(x1+x2+x33,y1+y2+y33) G ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 )
point GravityCenter(point A, point B, point C) {
double Gx = (A.x + B.x + C.x) / 3;
double Gy = (A.y + B.y + C.y) / 3;
return point(Gx, Gy);
}
2. AG=2GD,BG=2GE,CG=2FG A G = 2 G D , B G = 2 G E , C G = 2 F G
3. S△AGC=S△AGB=S△BGC S △ A G C = S △ A G B = S △ B G C
4. GA→+GB→+GC→=0⃗ G A → + G B → + G C → = 0 →
性质4证明:
外心:
定义:三条中垂线的交点,常用 O O 来表示。
性质:
1. 外心坐标:有点复杂,,,
设外心坐标为 O(x0,y0) O ( x 0 , y 0 ) ,外接圆半径为 r r 。那么外接圆的方程就为
。
由此可得: