已知任意三角形的三边长为 a a a、 b b b、 c c c(需保证给定的 a a a、 b b b、 c c c值能够构成一个三角形)。假设该三角形的内心为 I I I,外心为 O O O,垂心为 H H H,重心为 G G G,则存在以下计算公式:
I O = a 2 b 2 c 2 − a b c ( a + b − c ) ( a + c − b ) ( b + c − a ) ( a + b + c ) ( a + b − c ) ( a + c − b ) ( b + c − a ) IO = \sqrt{\frac{a^2 b^2 c^2 - abc(a+b-c)(a+c-b)(b+c-a)}{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}} IO=(a+b+c)(a+b−c)(a+c−b)(b+c−a)a2b2c2−abc(a+b−c)(a+c−b)(b+c−a)
I H = 4 a 2 b 2 c 2 − ( a 3 + b 3 + c 3 + a b c ) ( a + b − c ) ( a + c − b ) ( b + c − a ) ( a + b + c ) ( a + b − c ) ( a + c − b ) ( b + c − a ) IH = \sqrt{\frac{4a^2 b^2 c^2 - (a^3 + b^3 + c^3 + abc)(a+b-c)(a+c-b)(b+c-a)}{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}} IH=(a+b+c)(a+b−c)(a+c−b)(b+c−a)4a2b2c2−(a3+b3+c3+abc)(a+b−c)(a+c−b)(b+c−a)
I G = 1 6 ( a 2 + b 2 + c 2 ) ( a + b + c ) − 3 ( a + b − c ) ( a + c − b ) ( b + c − a ) a + b + c IG = \frac{1}{6} \sqrt{\frac{(a^2 + b^2 + c^2)(a+b+c) - 3(a+b-c)(a+c-b)(b+c-a)}{a+b+c}} IG=61a+b+c(a2+b2+c2)(a+b+c)−3(a+b−c)(a+c−b)(b+c−a)
O H = 9 a 2 b 2 c 2 ( a + b + c ) ( a + b − c ) ( a + c − b ) ( b + c − a ) − ( a 2 + b 2 + c 2 ) OH = \sqrt{\frac{9a^2 b^2 c^2}{(a+b+c)(a+b-c)(a+c-b)(b+c-a)} - (a^2 + b^2 + c^2)} OH=(a+b+c)(a+b−c)(a+c−b)(b+c−a)9a2b2c2−(a2+b2+c2)
O G = a b c 2 ( a + b + c ) ( a + b − c ) ( a + c − b ) ( b + c − a ) OG = \frac{abc}{2 \sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}} OG=2(a+b+c)(a+b−c)(a+c−b)(b+c−a)abc
H G = a b c ( a + b + c ) ( a + b − c ) ( a + c − b ) ( b + c − a ) HG = \frac{abc}{\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}} HG=(a+b+c)(a+b−c)(a+c−b)(b+c−a)abc
上述公式为本人自行推导整理,若发现错误请在评论区留言以尽快更正。