POJ-3254 Corn Fields

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/XzzF1024/article/details/79953908

题目链接:

POJ-3254

题目大意:

给一个 N×M 块土地,1 表示这块土地肥沃,0 表示土地贫瘠;现在只能在肥沃的土地上种玉米,问有多少种种法使得玉米两两不相邻 (相邻指的是上下走右四个方向) ?
Tips : 也可以一颗都不种。还要取模。

数据范围:

1N,M12

解题思路:

这个数据范围,状压DP啊!(好吧!看的题解)
dp[i][S] 表示第 i 行的 S 状态的方案数;
那么,dp[i][S] 就由上一行所有的 与状态S不冲突在上一行合法 的状态转移 T 过来,即dp[i][S]+=dp[i1][T]
其中 “与状态 S 不冲突” 是指种玉米的地方不相邻,“在上一行合法” 是指种玉米的地方得是肥沃的。
判断两个状态是否冲突,利用位运算能非常简单的解决:

bool is_conflict(int Sa, int Sb) {   //判断两个状态是否冲突,冲突返回true
    if(!(Sa & Sb) ) return false;
    return true;
}

判断一个状态 S 在某一行是否合法,如果当前行状态取反之后和 S 相与的结果为 0,那这个状态就是合法的!
代码中有解释;非常的精妙,学到了。


AC代码:

/********************************************
 *Author*        :XzzF
 *Created Time*  : 2018年04月15日 星期日 09时38分36秒
 * Ended  Time*  : 2018年04月15日 星期日 10时42分53秒
*********************************************/

#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int inf = 1 << 30;
const LL INF = 1LL << 60;
const int MOD = 100000000;
const int MaxN = 1 << 12;

int N, M;
int dp[14][MaxN + 5];    //dp[i][S]表示前i行的S状态的方案数
int field[14][14];
int valid_status[MaxN + 5];  //存合法的状态(即任意两个1不相邻)
int valid_cnt;    //合法状态的个数
int fertile[14];  //fertile[i]表示第i行的土地状态
int all;

void Init() {
    //找出所有合法的状态
    memset(valid_status, 0, sizeof(valid_status));
    valid_cnt = 0;
    for(int i = 0; i < MaxN; i++)
        if(!(i & (i << 1)))
            valid_status[++valid_cnt] = i;

    //处理每一行的土地状态
    memset(fertile, 0, sizeof(fertile));
    for(int i = 1; i <= N; i++) 
        for(int j = 1; j <= M; j++) 
            fertile[i] = ((fertile[i] << 1) | field[i][j]);

    //初始化dp
    all = (1 << M);
    for(int i = 1; i <= valid_cnt; i++) {
        int S = valid_status[i];
        if(S < all && !(S & (~fertile[1]))) 
            dp[1][S] = 1;
    }
}

bool is_valid(int row, int S) {      //判断S状态在第row行是否合法,合法返回true
    if(S < all && !(S & (~fertile[row]))) return true;
    return false;
}

bool is_conflict(int Sa, int Sb) {   //判断两个状态是否冲突,冲突返回true
    if( !(Sa & Sb) ) return false;
    return true;
}

int main()
{
    while(scanf("%d %d", &N, &M) != EOF)
    {
        for(int i = 1; i <= N; i++) 
            for(int j = 1; j <= M; j++)
                scanf("%d", &field[i][j]);
        Init();
        for(int R = 2; R <= N; R++) {
            for(int j = 1; j <= valid_cnt; j++) {
                int pre_S = valid_status[j];     //枚举上一行的合法状态
                if(is_valid(R - 1, pre_S)) {
                    for(int k = 1; k <= valid_cnt; k++) {   //枚举当前行的状态
                        int cur_S = valid_status[k];
                        if(is_valid(R, cur_S) && !is_conflict(pre_S, cur_S)) {
                            dp[R][cur_S] = (dp[R][cur_S] + dp[R - 1][pre_S]) % MOD;
                        }
                    }
                }
            }
        }
        int ans = 0;
        for(int i = 1; i <= valid_cnt; i++) {
            if(valid_status[i] < all)
                ans = (ans + dp[N][valid_status[i]]) % MOD;
        }
        printf("%d\n", ans);
    }
    return 0;
}
阅读更多

没有更多推荐了,返回首页