和的逆运算问题解析
问题描述
给定n个整数两两相加可以得到n(n - 1) / 2个和,我们需要根据这些和找出原来的n个整数。如果无解,输出"Impossible"。
思路解析
-
理解问题:我们需要从给定的和中恢复出原始的整数序列。这个问题可以通过枚举和验证的方法来解决。
-
数学推导:对于任意三个数x1, x2, x3,我们有以下三个和:
- x1 + x2
- x1 + x3
- x2 + x3
通过这三个和,我们可以推导出x1, x2, x3的值。具体来说,x1 = (x1 + x2 + x1 + x3 - x2 - x3) / 2 = (sums[0] + sums[1] - sums[n-1]) / 2。
-
算法设计:我们可以枚举所有可能的和的排列,然后尝试找出符合条件的整数序列。对于每个排列,我们首先计算出x1的值,然后依次计算出x2, x3, …, xn的值。接着,我们需要验证这个序列是否满足所有的和的条件。
-
验证:对于每个排列,我们需要检查计算出的整数序列是否满足所有的和的条件。如果满足,我们就找到了一个解。如果不满足,我们就需要继续尝试下一个排列。
-
输出结果:如果找到了符合条件的整数序列,我们需要按非降序排序后输出。如果没有找到符合条件的序列,我们需要输出"Impossible"。
代码解析
import itertools
def solution(n, sums):
# 枚举 sums 的所有排列
for perm in itertools.permutations(sums):
# 利用 sums 中前面3个值推导出 x1
# perm[0] 是 x1 + x2, perm[1] 是 x1 + x3, perm[n-1] 是 x2 + x3
x1 = (perm[0] + perm[1] - perm[n-1])