LangChain实战课 - ReAct框架与代理的应用
在本次LangChain实战课程中,我们深入探讨了ReAct框架以及代理(Agent)在大语言模型中的应用。以下是本次课程的核心内容和要点:
1. ReAct框架的介绍
- ReAct框架是一种指导大语言模型(LLMs)进行推理和行动的思维框架,它通过协同推理(Reasoning)和行动(Acting)来解决任务。
- 推理阶段包括对环境的观察和生成推理轨迹,而行动阶段则涉及到与外部源的交互和收集信息。
2. ReAct框架的重要性
- ReAct框架能够改善大模型解决问题时的可解释性和可信度,因为它详细记录了每一步的推理过程。
- 通过ReAct框架,LLMs能够生成任务解决轨迹,即观察环境、进行思考、采取行动,从而提高了模型的自主性和灵活性。
3. 代理的作用
- 代理(Agent)是LangChain中的核心概念,它能够接触并使用一系列外部工具,并根据用户的输入决定调用哪些工具。
- 代理不仅能够使用多种工具,还能够将一个工具的输出作为另一个工具的输入,实现工具间的协同工作。
4. 代理与链的核心差异
- 代理与链(Chain)的主要区别在于代理具有更高的自主性,能够根据任务需求自主计划、判断并执行行动,而链则更多地关注于单一的任务流程。