- 博客(47)
- 收藏
- 关注
原创 Python Day47 学习(日志Day16-17复习)
今日复习到这里,明日继续剩余几种算法的复习。第二遍复习时发现第一遍的学习不够细致,导致一些知识有遗漏,从而造成“不理解”的局面,这几日结合手写的方式复习后,对“如何处理一份数据”和“代码为什么这样写”有了更清晰的认识。接下来继续复习下面内容的同时,前面已学习过的代码还得经常手下练习着,总归是熟练功。勘误:Day17中应为“划分数据集”,而非“划分数据值”
2025-06-10 17:04:45
55
原创 Python Day45 学习(日志Day13-14复习)
今日复习到这里,明日复习"子图的绘制”,并用“心脏病数据集”对数据预处理部分进行学习情况检测,继续查漏补缺。比训练营的正常学习进度落后了很多,但没办法,学得卡住了。既然卡住了就说明前面的内容自己还是没有彻底掌握,那就重头再来,待前面彻底掌握再进行更深入内容的学习。一切以“掌握”为主,继续加油吧!补充:关于“热力图”的阅读。补充:关于“数据预处理”补充:关于“数据预处理”为什么要进行数据预处理?
2025-06-08 11:01:11
321
原创 Python Day44 学习(日志Day12复习)
注:这里AI给出的“适用场景”存在问题。关于性别,为二分类问题,不需要使用独热编码。三分类以上才涉及独热编码。出现问题:忘记之前已对数据进行了独热编码,导致映射出来的值为空值。对信贷数据重新进行标签编码(回写昨日复习的代码)对信贷数据重新进行标签编码(回写昨日复习的代码)补充:对数据进行“归一化”和“标准化”的作用。补充:“独热编码”与“标签编码”的选择。
2025-06-07 11:59:33
305
原创 Python Day43 学习(日志Day10-11复习)
今日复习到这里,明日继续,加油!补充:花括号在代码中的使用。补充:花括号在代码中的使用。
2025-06-06 17:37:48
249
原创 Python Day42 学习(日志Day9复习)
箱体越高,数据越分散;箱体越矮,数据越集中。箱体高度可以帮助你判断该类别下数据的离散程度。补充:关于“小提琴图”的阅读。
2025-06-05 17:00:37
647
原创 Python Day41学习(日志Day8复习)
重写代码时出现的问题:.tolist()是一个方法对象,调用时须加()。刚开始书写时漏掉了(),导致报错。
2025-06-03 22:30:43
234
原创 Python Day40 学习(复习学习日志Day5-7)
自己写的时候,还是出现了问题:首先是忘记了要定义一下data, 通过data =pd.read_csv('data.csv')可以将读取到的数据保存到变量data中,方便后续进行数据分析。其次,是漏掉了这行代码的作用是:把DataFrame的所有列名提取出来,转换成一个列表,赋值给变量c。得到的是一个包含所有列名的Index对象。.tolist()方法把这个Index对象转换成普通的Python列表。这样,c。这样做的好处是,后面可以用来遍历每一列,方便批量处理每一列的数据。
2025-06-02 16:29:18
341
原创 Python Day39 学习(复习日志Day4)
今日复习了日志Day4的内容,感觉还是得在纸上写一写印象更深刻,接下来几日都采取“纸质化复习过往日志”和“电脑上重敲代码自检”结合的方式复习,明日继续,加油!补充:如何判断是用“众数”还是“中位数”填补空缺值?补充: 关于“类”和“类的实例”的通俗易懂的例子。复习Day4日志内容。复习Day4日志内容。
2025-06-01 22:01:18
331
原创 Python Day33 学习
这类算法在降维过程中不使用任何关于数据样本的标签信息(比如类别标签、目标值等)。它们仅仅根据数据点本身的分布、方差、相关性、局部结构等特性来寻找低维表示。
2025-05-26 17:23:52
583
原创 Python Day29 学习
特征总结:在债务合并用途上表现一致,几乎无破产记录,信用问题极少,资金用途集中且很少涉及特殊类别。财务状况稳定,信用良好,资金流向明确。定义依据:各项关键财务和信用指标表现优异,显示出良好的财务自律性和信用履约能力,所以定义为 “优质信用稳健财务型”。
2025-05-22 12:49:26
637
原创 Python Day28 学习
DBSCAN聚类Q1. 该算法的原理是什么?总体而言,DBSCAN聚类是一种基于密度的聚类算法,适合发现任意形状的簇和检测噪声点Q2. 代码实现打印结果代码继续(绘制评估指标图)代码继续(进行聚类)从聚类的结果来看,这次聚类失败,因为没有少数簇的数目太少。对此,提出问题:Q3. 如何判断DBSCAN聚类是否成功?(除了聚类评估指标外)
2025-05-21 17:29:06
462
原创 Python Day25 学习
数组的随机化创建指的是利用NumPy等工具生成包含有随机数的数组。这些数组的元素并非是手动指定的,而是由随机数生成器自动生成的。NumPy数组支持“向量化”操作,可以直接对整个数组加1,优势明显。今日学习到这里,得补充线性代数的知识了(苦笑)。明日继续“数组索引”的学习,进度是快不了一点,还是慢慢来吧,加油,加油!注:rand()与random()都是均匀分布,但rand()能直接生成数组。注:这部分代码的作用是把一个数组中的每个元素都加1,然后计算所有元素的总和。代码示例:计算两个数组的和、差、除法。
2025-05-14 22:33:07
427
原创 Python Day 24 学习
NumPy数组可以是一维、二维或更高维的数组。一维数组类似Python列表,二维数组类似矩阵,三维及以上数组可以表示更复杂的数据结构。如概念所示,NumPy数组中的所有元素必须是相同的数据类型。注意这里须与Python中的列表进行区分(列表可以包含不同类型的元素)。它是用于数值计算的核心数据结构,能够高效地存储和操作大量的。NumPy数组在内存中是连续存储的,计算效率比Python列表高。今日学习到这里,明天继续NumPy数组的学习。NumPy数组是Python中由NumPy库提供的一种。
2025-05-13 22:25:21
596
原创 Python Day23 学习
特征重要性蜂巢图是 SHAP 的全局解释工具,通过展示每个特征的 SHAP 值分布,帮助我们理解特征对模型预测的影响大小、方向和分布情况。特征重要性条形图(Feature Importance Bar Plot)是 SHAP 提供的一种全局解释工具,用于展示模型中各个特征对预测结果的重要性。:表示特征的重要性,通常是特征的 SHAP 值的平均绝对值(`mean(|SHAP value|)`)。- SHAP 值的绝对值越大,说明该特征对模型预测的影响越大。SHAP 值,表示特征对模型预测的影响大小和方向。
2025-05-12 21:45:04
1170
原创 Python Day 22 学习
机器学习模型仿若一个黑盒子,我们只能看到输入和输出,但至于“输入到输出之间发生了什么”我们是不知道的。这里让我联想到语言学家乔姆斯基在语言习得中提到的Black Box,可以与之关联理解。SHAP模型就可以让我们清楚地看到从输入到输出之间到底发生了什么(已知条件对最终预测结果起到了哪些影响,是正向还是负向)。
2025-05-11 22:35:19
1192
原创 Python Day20 学习
2. 现在根据该理解来学习一下其实现代码。启发式算法是优化器,所以我们还是。现在开始“粒子群优化”的实现。先运行之前预处理的代码。
2025-05-09 22:02:08
296
原创 Python Day 19 学习
超参数调整专题1知识点回顾网格搜索随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)time库的计时模块,方便后人查看代码运行时长Q. 什么是“超参数”?模型 = 算法实例化+内参(训练)+外参(人为设置)这里的外参也叫做“超参数”,它是可以人为进行修改的。外参在实例化类的时候,可以使抽象的类变得具体。比如“类”为“人”(参数:眼睛颜色,发型......),我们可以通过设置参数(其眼睛颜色,发型等)使之变得具体。
2025-05-08 21:44:08
983
原创 Python Day 17 学习
混淆矩阵(Confusion Matrix)是用于评估分类模型性能的工具,它以矩阵形式展示了模型的预测结果与真实值之间的对比情况。混淆矩阵特别适用于二分类或多分类问题。今日学习到这里,这一部分内容较多,慢慢来学。明日接着剩余几种算法的理解与学习。继续加油!!!
2025-05-06 17:59:26
486
原创 Python Day16 学习
比如:示例代码中,若Home Ownership与Annual Income相关,那么我们就可以根据不同房屋所有权类型的平均收入来填充Annual Income中缺失的值。【3】对于一些缺失值较多的特征,若该特征对目标变量影响较大,可以采用“多重填补法”等方式进行填充;若影响较小,可以尝试直接删除含有缺失值的行,【2】对于一些对象类型的特征,若其存在缺失值,我们需要先将其转化为数值类型。如果特征的类别较少,且没有明显的顺序关系,可以采用独热编码。(2)读取数据,查看数据信息,理解数据。
2025-05-05 21:56:22
409
原创 Python Day15 学习
总1. 定义要绘制的特征2. 设置图片清晰度3. 创建一个包含2行2列的子图布局4. 子图绘制:(方式一)手动指定特征索引进行绘图(方式二)使用for循环遍历特征(方式三)使用enumerate()函数5. 调整子图之间的间距+显示图形根据示例代码详细学习1.定义要绘制的特征。
2025-05-04 20:34:40
594
原创 Python Day14 学习
讲义Day9内容学习讲义Day9内容学习DAY 9知识点:热力图和子图的绘制介绍了热力图的绘制方法介绍了enumerate()函数介绍了子图的绘制方法作业:尝试对着心脏病数据集绘制热力图和单特征分布的大图(包含几个子图)
2025-05-03 17:47:19
421
原创 Python Day 13 学习
今日处理心脏病数据集时发现前面的一些内容还是经常忘,糊里糊涂的。可见,前面的内容必须及时复习,不然学到后面只会越来越糊涂。(2)需注意这里data[numeric_cols]是通过列名列表numeric_cols从DataFrame中选取的多列数据,符合fit_transform要求输入的数据是二维数组的要求,因而不用加双括号。注:这里在第一次书写打印时,trestbps的值被覆盖为标准化后的值了,在这种情况下,只须在进行独热编码前重新读取原始数据即可。1. 首先进行数据的读取和查看。
2025-05-02 22:09:48
269
原创 Python Day12 学习
在这里,结果呈现的是映射后的"Home Ownership"和“Term”列的数值,以及其他 列的原始数据。(data - min_val) / (max_val - min_val):将数据缩放到 [0, 1] 范围。明日先把今日所学回温一下,自己书写代码对照,之后再进行新内容的精进。data - min_val:将数据中的每个值减去最小值,确保数据的最小值为 0。max_val - min_val:计算数据的范围(最大值减去最小值)。Q1.如何创建函数?
2025-05-01 23:18:12
358
原创 Python Day 11 学习
自理解:“字典”就是一个大杂烩,存储任意类型对象。但与我们日常所说的“字典”不同,它的存储对象是无序的,因而不能够索引和切片。
2025-04-30 21:07:07
373
原创 Python Day 10 学习
今天学习时感觉思路清晰了很多,明天正式开始讲义Day8内容的学习。进度有点落后了,但实在是快不起来,还是慢慢来吧。2. 尝试绘制一下“年信用记录”和“信用违约”的关系。1. 尝试绘制一下“年信用记录”的箱线图。4. 确定绘制什么图并确定数据来源。梳理一下绘制图像大体的步骤。5. 设置图表标题和标签。
2025-04-29 17:01:05
318
原创 Python Day 9 学习
代码书写:通过AI对第二行代码(不理解)进行学习注:'hue'是一个分组变量,用于在图中通过颜色区分不同类别的数据分布。
2025-04-28 22:07:24
359
原创 Python Day 8 学习
list_append方法会直接修改原列表但不会返回修改后的列表,append()的返回值一直是None。错误一:i是列名(字符串),它本身没有dtype属性,因而不能直接缀上dtype。上述代码为更为简单的筛选连续特征的方法,现在我尝试写一下之前学习的较为复杂的方式。单特征可视化:连续变量箱线图(还说了核密度直方图)、离散特征直方图。筛选后方便我们进行后续的数据分析和可视化操作。- 为后续的数据清洗和特征工程提供依据。- 发现数据中的异常值或偏态分布。- 帮助理解数据的分布特性。进行Day6内容的精进。
2025-04-27 22:35:29
388
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人