Python Day 24 学习

讲义Day16内容的精进

NumPy数组

Q. 什么是NumPy数组?

NumPy数组是Python中由NumPy库提供的一种多维数组对象,它称为N-dimensional array,简称ndarray。它是用于数值计算的核心数据结构,能够高效地存储和操作大量的同类型数据。

Q. NumPy数组有怎样的特点?

(1)多维性

NumPy数组可以是一维、二维或更高维的数组。一维数组类似Python列表,二维数组类似矩阵,三维及以上数组可以表示更复杂的数据结构。

(2)同质性

如概念所示,NumPy数组中的所有元素必须是相同的数据类型。注意这里须与Python中的列表进行区分(列表可以包含不同类型的元素)。

(3)高效性

NumPy数组在内存中是连续存储的,计算效率比Python列表高。

注:讲义中有两处重要的点,复制粘贴于此

Q. 数组的创建

数组的简单创建

import numpy as np
a = np.array([2,4,6,8,10,12]) # 创建一个一维数组
b = np.array([[2,4,6],[8,10,12]]) # 创建一个二维数组
print(a)
print(b)

输出:

[ 2  4  6  8 10 12]
[[ 2  4  6]
 [ 8 10 12]]

可以用shape查看数组形状

a.shape 

创建一个2行3列的全零矩阵

zeros = np.zeros((2, 3)) 
zeros

输出:

array([[0., 0., 0.],
       [0., 0., 0.]])

 创建一个形状为(3, )的全1数组

ones = np.ones((3,)) 
ones

输出:

array([1., 1., 1.])

顺序数组的创建

arange = np.arange(1, 10) # 创建一个从1到10的数组
arange

输出:

array([1, 2, 3, 4, 5, 6, 7, 8, 9])

今日学习到这里,明天继续NumPy数组的学习。加油!!!@浙大疏锦行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值