多图详解汉诺塔递归实现思路--含实现代码

本文介绍了汉诺塔问题的递归解决思路,通过数学归纳法证明了递归解法的有效性,并提供了从3个瓷盘到4个瓷盘的代码运行实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

为了节约大家的时间,本文对汉诺塔的定义就不做赘述了,如果有小伙伴不清楚汉诺塔的规则可以直接点蓝字跳转过去。

本篇博客内容

  • 汉诺塔实现的思路
  • 用递归的方式实现汉诺塔

汉诺塔实现的思路

我们先以两个瓷盘为例:

image-20220504132608602

由于小瓷盘1位于顶部,因此可以移动到B位置

image-20220504132811295

接着我们就可以将大瓷盘2移动到C位置,再将小瓷盘1移动到C位置,完成移动,两个磁盘的挪动就完成了。

image-20220504133044016

然后我们再以三个瓷盘为例:

image-20220504133130731

我们忽略最大的瓷盘,先考虑如何将剩余的瓷盘(1和2)移动到B位置,如果我们移动剩余的瓷盘的方式与之前移动两个瓷盘时一样,我们就可以将它们移动到B位置上。然后我们再将最大的瓷盘移动到C位置上,然后,再使用与之前相同的原理,我们将B位置上的瓷盘移动到C位置上。

image-20220504133442028

用数学归纳法证明可以通过任意数量的瓷盘达到目标:

当有一个瓷盘时,我们可以直接移动到C位置上。

假设有n个瓷盘时我们可以达到目标。

现在我们考虑移动n+1个瓷盘:

image-20220504133648610

我们先忽略最大的瓷盘

image-20220504133739130

假设我们能移动n个瓷盘,我们将n个瓷盘移到B位置上

image-20220504134021690

然后将最大的瓷盘移动到C位置上,最后我们将B位置上的n个瓷盘移动到C位置上,移动完成。证明完毕。

汉诺塔的解决方案:要解决n个瓷盘的汉诺塔时,需要使用n-1个瓷盘的解决方案;为了解决n-1个汉诺塔,我们将使用n-2个汉诺塔来解决,直到最后只有一个瓷盘的状态,递归解决。

用递归的方式实现汉诺塔

重点理解是理解代码中媒介的含义。

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>

void print_move(char a, char b) //挪动位置,将瓷盘从a位置挪动到b位置上。
{
	printf("%c -> %c\n", a, b);
}

void hannuo(int n, char pos1, char pos2, char pos3)//这里的pos分别为起始位置,媒介位置,目的位置
{
	if (n == 1)
	{
		print_move(pos1, pos3);//只剩一个盘子,直接将盘子移动到目的位置
	}
	else
	{
		hannuo(n-1,pos1,pos3,pos2);//将n-1个盘子从起始位置以pos3为媒介都挪到pos2上
		print_move(pos1, pos3);//这时只剩一个盘子在起始位置,需要移动到目的位置
		hannuo(n-1,pos2,pos1,pos3);//再将这n-1个盘子以pos1为媒介挪到pos3上
	}
}

int main()
{
	int n = 0;//瓷盘的数量
	scanf("%d", &n);
	hannuo(n, 'a', 'b', 'c');//a、b、c分别代表三根柱子的位置;
}

代码运行实况:

3个瓷盘

在这里插入图片描述

4个瓷盘
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Morning_Yang丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值