Beatr1ce.
码龄1年
  • 31,199
    被访问
  • 25
    原创
  • 79,805
    排名
  • 52
    粉丝
关注
提问 私信

个人简介:菜鸟大学生。

  • 加入CSDN时间: 2021-07-11
博客简介:

Beatr1ce的博客

查看详细资料
  • 3
    领奖
    总分 233 当月 43
个人成就
  • 获得20次点赞
  • 内容获得7次评论
  • 获得75次收藏
创作历程
  • 4篇
    2022年
  • 21篇
    2021年
成就勋章
TA的专栏
  • 计算机网络
    2篇
  • 计算机网络1
    13篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MOV传送指令正误判断

MOV传送指令正误判断
原创
发布博客 2022.05.25 ·
16 阅读 ·
0 点赞 ·
0 评论

计算机网络——物理层

物理层
原创
发布博客 2022.03.29 ·
6421 阅读 ·
1 点赞 ·
0 评论

寻址方式,简单易懂

指令的构成: 指令名 目的操作数DST,源操作数SCR1.立即寻址:指令中自带数据立即数,直接读取,最快;MOV AX,3276H MOV AL,27H2.寄存器寻址:指令中DST和SCR有寄存器的;SCR是寄存器寻址:MOV AX,BXDES是寄存器寻址:ADD AX, 1234h源和目的操作数都是寄存器寻址:MOV AX,BX3.直接寻址:指令中存放的是地址,直接解析这个地址;MOV AX,[3000H]MOV AX,ES:[2850H]4
原创
发布博客 2022.03.26 ·
257 阅读 ·
0 点赞 ·
0 评论

计算机网络——数据链路层

数据链路层奇偶检验码 CRC 海明码 差错控制
原创
发布博客 2022.03.23 ·
1741 阅读 ·
0 点赞 ·
0 评论

集成逻辑门

引入 逻辑门是组成各类数字逻辑电路的基本逻辑器件。 集成电路(集成电路芯片):实现各种逻辑功能的元器件及其连线都集中制造在同一块半导体材料小片上,封装在一个壳体中。 采用集成电路进行数字系统设计的优点: 1. 可以简化设计和调试过程 2. 可靠性高 3. 功耗低4. 成本低 5. 易于维护1 数字集成电路的分类半导体...
原创
发布博客 2021.10.16 ·
224 阅读 ·
0 点赞 ·
0 评论

电子邮件 e-mail原理

1 电子邮件的组成电子邮件通常由两部分组成:用户代理(UA):让用户能够阅读和发送邮件。 UA是一个本地程序,提供命令行或图形界面,让用户和电子邮件系统交互 。邮件传输代理 (MTA):将邮件从源端送到目标端,又被称为邮件服务器。 MTA通常是一个系统守护进程,即运行在后台的进程,在系统中传递电子邮件。2 电子邮件的体系结构 Sender在UA编辑好邮件 ...
原创
发布博客 2021.08.15 ·
612 阅读 ·
0 点赞 ·
0 评论

计算机网络分层解读PPT

发布资源 2021.08.10 ·
zip

swf文件打不开怎么办?

发布问题 2021.08.06 ·
2 回答

贪心算法/贪婪算法

贪心算法是所有算法中最简单、最易实现的一种算法,的吗?世界上本没有贪,学算法的人多了,也便有了贪。你贪我也贪,贪心算法也变得越来越难贪了。 但是,万变不离其宗,打好基础得其根,我想怎么贪,就怎么贪,怎么贪都不怕!!贪心算法简介 贪心算法(又称贪婪算法)是一种在求解问题时,做出在某种意义上的局部最优解的算法(作出在当前看来最好的选择。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择。...
原创
发布博客 2021.08.03 ·
536 阅读 ·
1 点赞 ·
0 评论

计算机网络理论配套实验文件

发布资源 2021.08.02 ·
zip

分治算法/分治思想

分治算法的基本思想:将一个问题分解为n个相互独立且与原问题性质相同的子问题,通过逐个解决小问题,从而解决整个问题。(逐个击破,分而治之分治算法是很多高效算法的基础。包括排序算法(快速排序,归并排序),查找算法(二分查找),傅立叶变换(快速傅立叶变换)…… 采用分治算法能解决问题有以下特征:原问题规模大,不易解决。但原问题可缩小且到一定程度就可以容易解决。 原问题可以分解成若干规模较小、求解方式相似的子问题。且各个子问题之间相互独立、互不影响。...
原创
发布博客 2021.07.30 ·
246 阅读 ·
2 点赞 ·
1 评论

斐波那契数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946…… 它的规律是:这个数列从第 3 项开始,每一项都等于前两项之和。在数学上,斐波...
原创
发布博客 2021.07.27 ·
9965 阅读 ·
6 点赞 ·
1 评论

汉诺塔(Hanoi) ——递归思想

汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具。传说故事可以点这看。汉诺塔问题是一个经典的数学难题,由 3根柱子和多个半径不等的圆盘构成,如下图所示:汉诺塔的操作步骤究竟是什么样的呢,我们可以通过这个游戏来感受一下:点我进入游戏界面!可见,汉诺塔的大体步骤就如下gif图所示:图片来自:编程帮——汉诺塔问题对于汉诺塔问题,我们可以大致划分为三个步骤解决(设有n个圆盘...
原创
发布博客 2021.07.26 ·
1509 阅读 ·
1 点赞 ·
0 评论

PhotoShop学习历程以及网站分享

博主将开启为期两周的PhotoShop学习计划,今天是2021/7/25第一个学习网址是:https://www.bilibili.com/video/BV1Q5411P7k4?p=4
原创
发布博客 2021.07.25 ·
83 阅读 ·
0 点赞 ·
0 评论

Wireshark抓包学习笔记

学习来自:https://www.cnblogs.com/linyfeng/p/9496126.html1Wireshark软件安装软件下载路径:wireshark官网。按照系统版本选择下载,下载完成后,按照软件提示一路Next安装。说明:如果你是Win10系统,安装完成后,选择抓包但是不显示网卡,下载win10pcap兼容性安装包。下载路径:win10pcap兼容性安装包2 Win10Pcap的使用方法http://www.win10pcap.org/howto/...
原创
发布博客 2021.07.24 ·
290 阅读 ·
0 点赞 ·
0 评论

HDLC PPP FR(帧中继)

学习基于老师给的的PPT、他人学习笔记和维基百科、百度百科等一系列权威资料。学习笔记仅个人学习用,便于记录和复习,无广泛传播之意,若有侵权,请联系我删除。欢迎各位大佬指正和交流。1HDLCHDLC(High-level Data Link Control,高级数据链路控制)是一种面向比特的链路层协议,其最大特点是对任何一种比特流(传输的时候是以比特为单位进行传输),均可以实现透明的传输。 HDLC在同步串行线路上封装...
原创
发布博客 2021.07.24 ·
826 阅读 ·
1 点赞 ·
0 评论

ACL实现包过滤 NAT网络地址转换

学习基于老师给的的PPT、他人学习笔记和维基百科、百度百科等一系列权威资料。学习笔记仅个人学习用,便于记录和复习,无广泛传播之意,若有侵权,请联系我删除。欢迎各位大佬指正和交流。...
原创
发布博客 2021.07.23 ·
659 阅读 ·
0 点赞 ·
0 评论

OSPF ISDN DCC

学习基于前人的PPT和维基百科、百度百科等一系列权威资料。学习笔记仅个人学习用,便于记录和复习,无广泛传播之意,若有侵权,请联系我删除。
原创
发布博客 2021.07.22 ·
152 阅读 ·
0 点赞 ·
1 评论

RIP原理及其配置

学习基于前人的PPT和维基百科、百度百科等一系列权威资料。学习笔记仅个人学习用,便于记录和复习,无广泛传播之意,若有侵权,请联系我删除。1RIP原理动态路由协议能够自动发现路由、计算路由。最早的动态路由协议是RIP(Routing Information Protocol,路由信息协议),其原理简单,配置容易。 RIP协议是一种内部网关协议(IGP),是一种动态路由选择协议,用于自治系统(AS)内的路由信息的传递。RIP协议基于距离矢量(Dista...
原创
发布博客 2021.07.21 ·
557 阅读 ·
0 点赞 ·
0 评论

IP路由原理 直连路由和静态路由 路由协议

学习基于前人的PPT和维基百科、百度百科等一系列权威资料。学习笔记仅个人学习用,便于记录和复习,无广泛传播之意,若有侵权,请联系我删除。1IP路由原理路由是指导IP报文发送的路径信息。(就是指导路由器如何进行数据报文发送的路径信息) 2直连路由和静态路由根据路由器学习路由信息、生成并维护路由表的方法包括直连路由(Direct)、静态路由(Static)和动态路由(Dynamic)。直连路...
原创
发布博客 2021.07.20 ·
2370 阅读 ·
3 点赞 ·
0 评论
加载更多