保持无损连接的BCNF分解是一种将关系模式分解成满足BCNF(Boyce-Codd范式)的较小关系的过程。以下是一个详细讲解和示例代码。
-
算法步骤:
- 输入:关系模式R,属性集合X,函数依赖集合F。
- 判断R是否满足BCNF,如果满足则结束。
- 在F中找到一个非平凡的函数依赖X -> Y,其中X 不是 R 的超键。
- 将 R 分解为两个关系模式 R1(X, Y) 和 R2(R - Y)。
- 递归地应用算法到 R1 和 R2。
- 输出:分解后的关系模式。
-
示例代码:
下面是一个使用Python实现保持无损连接的BCNF分解的简单示例代码:
def BCNF_decomposition(relation, functional_dependencies):
if is_BCNF(relation, functional_dependencies):
return [relation]
for fd in functional_dependencies:
lhs = fd[0]
rhs = fd[1]
# 检查 X 是否是超键
if not is_superkey(relation, lhs):
# 分解关系模式
new_relation_1 = lhs + rhs
new_relation_2 = relation - rhs
# 递归应用算法
decomposition1 = BCNF_decomposition(new_relation_1, functional_dependencies)
decomposition2 = BCNF_decomposition(new_relation_2, functional_dependencies)
return decomposition1 + decomposition2
def is_BCNF(relation, functional_dependencies):
for fd in functional_dependencies:
lhs = fd[0]
rhs = fd[1]
# 检查 X -> Y 是否违反 BCNF
if not is_superkey(relation, lhs + rhs):
return False
return True
def is_superkey(relation, attributes):
# 检查属性集合是否是关系模式的超键
closure = set(attributes)
while True:
new_closure = set(closure)
for fd in functional_dependencies:
lhs = fd[0]
rhs = fd[1]
if lhs.issubset(closure):
new_closure = new_closure.union(rhs)
if closure == new_closure:
break
closure = new_closure
return relation.issubset(closure)
# 输入关系模式和函数依赖
relation = {'A', 'B', 'C'}
functional_dependencies = [({'A'}, {'B'}), ({'B'}, {'C'})]
# 进行BCNF分解
decomposition = BCNF_decomposition(relation, functional_dependencies)
print(decomposition)
这个示例代码实现了保持无损连接的BCNF分解算法,并用简单的例子进行了演示。在输入中,关系模式为{'A', 'B', 'C'}
,函数依赖集合为[({'A'}, {'B'}), ({'B'}, {'C'})]
。通过调用 BCNF_decomposition
函数,将返回关系模式的BCNF分解结果。
请注意,实际应用中,可能需要处理更复杂的关系模式和函数依赖集合,并进行适当的异常处理和错误检查。此示例只是一个简单的演示,供学习和理解BCNF分解算法的基本思想。