分解为BCNF范式的方法(详细讲解)

博客通过具体例题展示将关系R={A,B,C,D,E,F,G},F={A->B,A->C,C->D,C->E,E->FG}分解为BCNF的过程。详细阐述分解步骤,包括求闭包、函数依赖、超键等,经三轮分解,最终将R分解为p={CD,ABC,EFG,CE},并给出对应函数依赖集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接在例题中感悟:

R={A,B,C,D,E,F,G},F={A->B,A->C,C->D,C->E,E->FG},将R分解为BCNF

http://t.csdn.cn/4D939有详细解最小依赖集的步骤,建议先看这个,接下来解题:

分解的步骤可以概括为:

1.求R的闭包   

2.根据闭包求函数依赖   

3.根据函数依赖求L,R,LR,N,求出超键   

4.若左边的字母不是超键,继续分解(回到第1步)

第一轮分解:

L:A

R:B,D,F,G

LR:CE

N为空集

A一定为候选键,x0=A,x1=ABCDEFG=U

所以A为唯一候选键

R中候选键为A,又因为F中C->D,C不是超键,所以要将R分解为

R1(CD),R2(ABCEFG)

第二轮分解:

对于R2(ABCDEFG)以下用“A+”表示闭包:

A+=U

C+=CDEFG

E+=EFG

所以R2中,F2={C->EFG,E->FG,A->BCEFG}

R中候选键:L:A,R=FGB,LR=CE,N为空

所以R2中的候选键为A,C->EFG中C不是超键,所以将R2分解为

R3(CEFG)R4(ABC)

第三轮分解:

对于R4的函数依赖:A->BC

R3(CEFG)的闭包

C+=CEFG

E+=EFG

所以F3中{C->EFG,E->FG}

因为R3中超键是C,E->FG不是超键,所以将R3分解为

R5=EFG,R6=CE

R5的函数依赖  E->FG   R6的函数依赖C->E,都是BCNF

综上R分解为p={CD,ABC,EFG,CE}

对应函数依赖集为{E->FG,C->E,A->BC,C->D}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值