损失函数———有关L1和L2正则项的理解

本文详细介绍了L1和L2正则化在机器学习中的作用和区别。L1正则化倾向于产生稀疏模型,适合特征选择;L2正则化通过减小权重值防止过拟合。通过优化、梯度和图形角度分析了两者对模型参数的影响,L1正则化易于使参数接近于0,实现特征稀疏化,而L2正则化则减小参数值。
摘要由CSDN通过智能技术生成

一、损失函:

模型的结构风险函数包括了   经验风险项  和  正则项,如下所示:

 

二、损失函数中的正则项

1.正则化的概念:

      机器学习中都会看到损失函数之后会添加一个额外项,常用的额外项一般有2种,L1正则化和L2正则化。L1和L2可以看做是损失函数的惩罚项,所谓惩罚项是指对损失函数中某些参数做一些限制,以降低模型的复杂度。

     L1正则化通过稀疏参数(特征稀疏化,降低权重参数的数量)来降低模型的复杂度;

     L2正则化通过降低权重的数值大小来降低模型复杂度。

     对于线性回归模型,使用L1正则化的模型叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。

 

 

 

 

 

  

一般正则化项前面添加一个系数λ,数值大小需要用户自己指定,称权重衰减系数weight_decay,表示衰减的快慢。

2.L1正则化和L2正则化的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值