又见Fibonacci数列
-
描述
-
数学神童小明终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位(高4位)就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验小明说的是否正确。
-
输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾结束。
输出
-
输出f[n]的前4个数字(若不足4个数字,就全部输出)。
样例输入
-
0 1 2 3 4 5 35 36 37 38 39 40
样例输出
-
0 1 1 2 3 5 9227 1493 2415 3908 6324 1023
-
输入
解题思路:Fibonacci数列是个神奇的数列,它包含了太多的知识,有些你甚至想都想不到……
这个题目的意思很简单了,但是这个题目绝对不是让你循环算出的,或许你做过fibonacci数列(二)的话,你也许在想使用矩阵二分幂的方法,但是这个方法只适合找F(n)的低位数字,至于这个题目,则是另一种思路,使用通项公式。
实际上我们可以把这一类题目归类:求最Fibonacci数列F(n)的高位,求n^m的高位,求n!的高位……,求n!有多少位数……,这类为题是要找一个很大的数的高位,或者估计出这个数有多大。区别于以前的求低位,这些问题实际上是一种近似计算,我们一般的解法是找出欲求的表达式an的同阶的一个表达式bn;
那么n很大的时候我们就可以用bn来近似代替an了,这里我们一般要求bn是比较容易计算出来的表达式。
具体到这个题目,我们知道Fibonacci数列有通项公式为:(注意,写的有点错误,公式中间应该是减号)
那么问题至此就很简单了,我们最后可以计算出log(an),保留它的的小数部分为temp即可。
代码如下:
#include<stdio.h>
#include<math.h>
int main()
{
int a[21],i,n;
double temp;
for(i=2,a[0]=0,a[1]=1;i<=20;i++)
a[i]=a[i-1]+a[i-2];
while(scanf("%d",&n)!=EOF)
{
if(n<=20) printf("%d\n",a[n]);
else
{
temp=n*log((1+sqrt(5.0))/2.0)/log(10.0)-0.5*log(5.0)/log(10.0);
temp-=floor(temp);
temp=pow(10.0,temp);
while(temp<1000)
temp*=10;
printf("%d\n",(int)(temp));
}
}
return 0;
}
大家想一下,如果直接用通项公式的话如果输入的n很大的话,f(n)就会很大,就没有办法保存下来,然后让你去求高四位,还有直接递归法求f(n)的话,也会遇到同样的问题。