CodeForces 361D Levko and Array(二分+dp)

题目链接:【CodeForces 361D】

输入一个大小是n的数列,最多可以改变其中的k个数值,问最终max(abs(a[i+1] - a[i])(1<=i<n))的最小值是多少

相邻差值的最小值跟最大值都能求出来,二分相邻差值

dp[i]表示当a[i]不变时,最多有多少个a[j](1<=j<i)可以不用改变

当相邻差值是x时,如果abs(a[i]-a[j])<=(i-j)*x,那a[j]就可以不用改变,dp[i] = max(dp[i], dp[j]+1),处理出所有的dp[],找到dp[]中的最大值maxn,如果maxn+k<n,说明所求值>x,否则就是<=x 

相邻差值最大是x ==> a[i]跟a[j]之间最大的差值是(i-j)*x

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
#define ll __int64
ll arr[2020];
int dp[2020];
int main()
{
	int n, k;
	cin>>n>>k;
	ll l=0, r=-1e9;
	cin>>arr[1];
	for(int i=2; i<=n; i++) 
	{
		cin>>arr[i];
		r = max(r, abs(arr[i]-arr[i-1]));
	}
	int ans=0;
	while(l<=r)
	{
		ll x = (l+r)>>1;
		int maxn=-1;
		for(int i=1; i<=n; i++)
		{
			dp[i] = 1;
			for(int j=1; j<i; j++)
			{
				if(abs(arr[j]-arr[i])<=x*abs(i-j)) 
				{
					dp[i] = max(dp[i], dp[j]+1);
				}
			}
			maxn = max(maxn, dp[i]);
		}
		if(maxn+k<n) l = x+1;
		else r = x-1, ans = x;
	}
	cout<<ans<<endl;
	return 0;
}


区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值