题目链接:【CodeForces 361D】
输入一个大小是n的数列,最多可以改变其中的k个数值,问最终max(abs(a[i+1] - a[i])(1<=i<n))的最小值是多少
相邻差值的最小值跟最大值都能求出来,二分相邻差值
dp[i]表示当a[i]不变时,最多有多少个a[j](1<=j<i)可以不用改变
当相邻差值是x时,如果abs(a[i]-a[j])<=(i-j)*x,那a[j]就可以不用改变,dp[i] = max(dp[i], dp[j]+1),处理出所有的dp[],找到dp[]中的最大值maxn,如果maxn+k<n,说明所求值>x,否则就是<=x
相邻差值最大是x ==> a[i]跟a[j]之间最大的差值是(i-j)*x
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
#define ll __int64
ll arr[2020];
int dp[2020];
int main()
{
int n, k;
cin>>n>>k;
ll l=0, r=-1e9;
cin>>arr[1];
for(int i=2; i<=n; i++)
{
cin>>arr[i];
r = max(r, abs(arr[i]-arr[i-1]));
}
int ans=0;
while(l<=r)
{
ll x = (l+r)>>1;
int maxn=-1;
for(int i=1; i<=n; i++)
{
dp[i] = 1;
for(int j=1; j<i; j++)
{
if(abs(arr[j]-arr[i])<=x*abs(i-j))
{
dp[i] = max(dp[i], dp[j]+1);
}
}
maxn = max(maxn, dp[i]);
}
if(maxn+k<n) l = x+1;
else r = x-1, ans = x;
}
cout<<ans<<endl;
return 0;
}