【MRI 数据】TCIA UPENN-GBM MRI 肿瘤数据集

数据简介

官网

 UPENN-GBM - The Cancer Imaging Archive (TCIA)icon-default.png?t=O83Ahttps://www.cancerimagingarchive.net/collection/upenn-gbm/

该数据集包含来自宾夕法尼亚大学的胶质母细胞瘤(GBM)患者的多参数磁共振成像(mpMRI)扫描,结合患者的人口统计信息、临床结果(例如,总生存期、基因组信息、肿瘤进展),以及多个组织学上不同的肿瘤亚区域的计算机辅助和手动修正的分割标签、整个大脑的计算机辅助和手动修正的分割、丰富的放射组学特征以及其对应的NIfTI格式。数据为DICOM格式,3D数据,颅骨在原始DICOM数据中保留,没有去除。每个病人的数据中包含了T1加权,T2加权,T1加权对比度增强和T2 FLAIR四种图像数据。有些病人的四种数据并不完整,缺失部分数据。T1加权3D数据大约300左右,T2加权数据大约100左右,T2-FLAIR 数据大约100个。

数据采集 protocol(dicom header)

数据样本可视化

T1W 3D 图像

T1W 3D 对比度增强图像

T2W 3D 图像

T2-FLAIR 2D 图像

参考文献

Bakas, S., Sako, C., Akbari, H., Bilello, M., Sotiras, A., Shukla, G., Rudie, J. D., Flores Santamaria, N., Fathi Kazerooni, A., Pati, S., Rathore, S., Mamourian, E., Ha, S. M., Parker, W., Doshi, J., Baid, U., Bergman, M., Binder, Z. A., Verma, R., … Davatzikos, C. (2021). Multi-parametric magnetic resonance imaging (mpMRI) scans for de novo Glioblastoma (GBM) patients from the University of Pennsylvania Health System (UPENN-GBM) (Version 2) [Data set]. The Cancer Imaging Archive. UPENN-GBM - The Cancer Imaging Archive (TCIA)

### CT 和 MRI 医学影像数据集 对于研究或训练目的而言,多个公开可用的数据集提供了丰富的资源来支持医学图像分析的发展。以下是几个常用的高质量CT和MRI数据集: #### 1. TCIA 数据库 The Cancer Imaging Archive (TCIA) 是一个大型开放存取数据库,其中包含了多种癌症类型的成像资料,包括大量的胸部、腹部以及脑部的CT扫描图片[^1]。 #### 2. ADNI 数据集 Alzheimer's Disease Neuroimaging Initiative (ADNI) 提供了一个专注于阿尔茨海默病及相关疾病的大规模纵向神经影像集合,主要包含来自患者的结构化和功能性的MRI图像。 #### 3. BraTS 数据挑战赛 Brain Tumor Segmentation Challenge (BraTS) 每年都会发布新的多模态脑肿瘤分割竞赛数据集,这些数据集中不仅有T1加权、T2加权等多种序列下的MRI图像,还包括对应的标注信息用于模型评估与验证。 #### 4. LIDC-IDRI 数据集 Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) 收录了超过1000名患者经过四位放射科医生独立标记过的肺结节CT切片图像,非常适合用来开发肺癌检测算法。 #### 5. UK Biobank 影像子集 UK Biobank 的影像部分涵盖了心脏磁共振成像(CMR),弥散张量成像(DTI),肝脏脂肪定量等广泛的全身各器官系统的高分辨率MRI扫描结果,能够满足不同领域研究人员的需求。 为了更好地利用上述提到的各种数据源,在获取之前应当仔细阅读其使用条款并遵循相应的版权规定。此外,考虑到医疗隐私保护的重要性,许多平台可能还需要申请权限才能下载完整的原始文件。 ```python import requests from bs4 import BeautifulSoup def fetch_dataset_info(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') title = soup.title.string.strip() description = ''.join([p.text for p in soup.find_all('p')[:2]]) return f"Title: {title}\nDescription:\n{description}" url_tcia = "https://www.cancerimagingarchive.net/" print(fetch_dataset_info(url_tcia)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学信号图像玩家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值