LeetCode204,计算质数,线性筛

题目

素数筛选,线性筛。

求1 - n之间的素数个数,不包含n。

题解

思路

x = a ∗ b , a ≠ 1 , b ≠ 1 x = a * b, a \neq 1, b \neq 1 x=ab,a=1,b=1, 那么 x x x是合数
一个合数 x x x,可以写成 x = p 1 ∗ p 2 ∗ . . . ∗ p i ∗ . . . ∗ p n x = p_1 * p_2 * ...* p_i *...*p_n x=p1p2...pi...pn, pi是x的质数,设 p ′ = m i n ( P ) = p i p' = min(P) = p_i p=min(P)=pi,
x = p ′ ∗ p [ 1 : i − 1 ] ∗ p [ i + 1 : n ] x = p' * p[1 : i - 1] * p[i + 1 : n] x=pp[1:i1]p[i+1:n]
设, q = p [ 1 : i − 1 ] ∗ p [ i + 1 : n ] q = p[1 : i - 1] * p[i + 1 : n] q=p[1:i1]p[i+1:n]
则, x = p ′ ∗ q x = p' * q x=pq
对于一个确定的 x x x p ′ / q p' / q p/q都是确定的,也就是说 x = p ′ ∗ q x = p' * q x=pq有唯一的表示,那么当我枚举到 q q q (第一个循环)的时候,我再枚举它的倍数(素数倍,第二个循环),枚举到 p ′ p' p倍,也就能得到 x = p ′ ∗ q x = p' * q x=pq, 而且只有在 q q q的时候,我才会枚举得到 x x x,也就是说, x x x只会在第二个循环出现一次,可得时间复杂度是O(n)。

对于任意的合数x, x = p ′ ∗ q , q < x x = p' * q, q < x x=pq,q<x那么 q q q一定会被枚举到, p ′ p' p x x x最小的质因数,那么 p ′ p' p也一定会被枚举到,那么 x x x也一定会被枚举到,即能枚举到所有的合数。

时间复杂度

O(n)

空间复杂度

O(n) 标记素数,暂存素数

代码

/*

*/
class Solution {
public:
    int countPrimes(int n) {
        vector<int> prim;
        vector<int> flag(n);
        if(n > 1) flag[1] = 1;
        for(int i = 2; i < n; i++) {
            if(flag[i] == 0) prim.push_back(i);
            for(int j = 0; j < prim.size() && i * prim[j] < n; j++) {
                flag[prim[j] * i] = 1;
                // i % prim[j] == 0, prim[j]是最小的x的最小苏因素
                // x = prim[j+1] * i, 因为prim[j]是i的素因素,
                //所以prim[j]是x的素因素,
                //所以prim[j+1]不是x的最小素因数,
                //所以x 会被其它数枚举得到,
                //可以计算得i' = x / prim[j]
                if(i % prim[j] == 0) break;
            }
        }
        return prim.size();
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>