Mapreduce编程模型(一)

1.1Mapreduce模型简介

        Mapreduce是一种可用于数据处理的编程模型,Hadoop上可以运行各种语言版本的Mapreduce程序。Mapreduce程序是并行运行的,采用了分治的思想。编程核心思想:键值对思想

        Mapreduce只需要用Map和Reduce的思想即可解决问题,即编写map()和reduce()函数

        Mapreduce编程的特点:

  • 开发简单
  • 可扩展性强
  • 容错性强

1.2 Mapreduce运行机制简介

 Mapreduce发展过程中经历了两个版本:MRv1和YARN/MRv2

  • MRv1的运行环境由Job Tracker和Task Tracker两部分组成
服务功能
Job Tracker资源管理&所有作业的控制
Task Tracker主要是接收Job Tracker的命令并执行

  • MRv2:基于YARN的第二代MapReduce的计算框架

                        提出了全新资源管理的框架YARN。

YARN中JobTracker

JobTracker

ResourceManager负责所有应用程序的资源分配
ApplicationManager仅负责管理一个应用程序

1.3Mapreduce架构优缺点

        1.优点

  •  良好的扩展性
  • 高容错性
  • 易于编程
  • 适合PB级别以上的大数据的分布式离线批处理

        2.局限性

  • Mapreduce执行速度慢
  • Mapreduce过于底层
  • 不是所有算法都能用Mapreduce实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值