WordCount实例分析(一)

本文详细分析了使用MapReduce实现WordCount的步骤,包括创建Maven项目,编写MyMapper类,以及重写map函数。在map函数中,读取1.txt文件的每一行,将单词拆分并映射输出。通过继承Mapper类,实现了分布式并行处理的功能,使用Hadoop的序列化处理,确保数据在集群间传输。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由上篇blog可知,Mapreduce架构处理问题过程中,需要map()函数和reduce()函数即可同时再添加驱动程序进行实现,本文根据老师上课所讲,对WordCount实例进行分析整理,为学习笔记,有不对的地方欢迎指正。


1.创建Maven项目

首先通过右键new-project-Maven-Maven Project(如下图所示),之后一直执行Next,进行骨架选择,选择maven-archetype-quickstart骨架,之后并进行命名,本项目命名为hadoop01,并在src/main/java下建立package名为com.qst.test。之后在其下创建MyMapper类。

 2.MyMapper类

(1)map函数功能

        写map函数将1.txt文件中的每一行文本读取出来,针对每一行将单词拆分&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值