[ Tool ] celery分布式任务框架基本使用

Celery是一个用于处理大量消息的分布式系统,专注于实时处理和异步任务队列,也支持任务调度。它不支持MicrosoftWindows。Celery架构包括消息中间件(如RabbitMQ或Redis)、任务执行单元(worker)和任务结果存储。Celery可应用于异步执行、延迟执行和定时执行场景。安装配置涉及pip安装Celery和事件库,以及设置消息中间件和任务结果存储。任务可以是基本结构(单个py文件)或包结构(多文件组织)。
摘要由CSDN通过智能技术生成

celery官方

Celery 官网:www.celeryproject.org/

Celery 官方文档英文版:docs.celeryproject.org/en/latest/i…

Celery 官方文档中文版:docs.jinkan.org/docs/celery…

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统

专注于实时处理的异步任务队列

同时也支持任务调度

注意

Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.

celery异步任务框架

1)可以不依赖任何服务器,通过自身命令,启动服务(内部支持socket)
2)celery服务为为其他项目服务提供异步解决任务需求的 注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求

人是一个独立运行的服务 | 医院也是一个独立运行的服务 正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题 人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求

celery架构

Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(task result store)组成。

消息中间件

Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等

任务执行单元

Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储

Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等

使用场景

异步执行:解决耗时任务,将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等

延迟执行:解决延迟任务

定时执行:解决周期(周期)任务,比如每天数据统计

celery的安装配置

pip install celery

pip install eventlet

消息中间件:RabbitMQ/Redis

app=Celery(‘任务名’, broker=’xxx’, backend=’xxx’)

两种celery的任务结构

基本结构

只写一个py文件,如celery_task.py

# worker文件
from celery import Celery
broker='redis://127.0.0.1:6379/1'  # broker任务队列
backend='redis://127.0.0.1:6379/2' # 结果存储
app=Celery(__name__,broker=broker,backend=backend)

#添加任务(使用这个装饰器装饰,@app.task)
@app.task
def add(x,y):
    print(x,y)
    return x+y
启动worker:
    需要将路径切换到该py文件的路径下,用终端执行
    - 非windows:celery worker -A celery_task -l info
    - windows:celery worker -A celery_task -l info -P eventlet
        
# 提交任务到broker文件
from celery_task import add
add(3,4)  # 直接执行,不会被添加到broker中
ret = add.delay(1,2)  # 向broker中添加一个任务
print(ret)  # ret是任务编号,后期需要通过任务编号获取任务执行结果

# 查看任务执行结果文件
from celery_task import app-
from celery.result import AsyncResult
id = '3e397fd7-e0c1-4c5c-999c-2655a96793bb'
if __name__ == '__main__':
    async = AsyncResult(id=id, app=app)
    if async.successful():
        result = async.get()
        print(result)
    elif async.failed():
        print('任务失败')
        elif async.status == 'PENDING':
        print('任务等待中被执行')
    elif async.status == 'RETRY':
        print('任务异常后正在重试')
    elif async.status == 'STARTED':
        print('任务已经开始被执行')

包结构

  • 新建一个包,包名随意,比如celery_task

包内结构

-celery_task

​ -__init__.py

​ -celery.py(必须叫celery)

​ -task01.py(任务文件,每个任务单独写一个py文件)

​ -task02.py

-add_task.py:为worker中提交任务

_get_res.py:获取任务执行结果

  • celery.py

worker文件

from celery import Celery
broker='redis://127.0.0.1:6379/1'  # broker任务队列
backend='redis://127.0.0.1:6379/2' # 结果存储
app=Celery(__name__,broker=broker,backend=backend,include=['celery_task.task01','celery_task.task02'])

  • add_task.py
from celery_task.task01 import add
from celery_task.task02 import mul


ret = add.delay(1,2)
print(ret)

ret = mul.delay(10,10)
print(ret)

  • get_res.py
from celery_task.celery import app
from celery.result import AsyncResult
id = '3d3779be-fe75-4ad4-ab31-d7dbe13d3e63'


if __name__ == '__main__':
    async = AsyncResult(id=id, app=app)
    if async.successful():
        result = async.get()
        print(result)
    elif async.failed():
        print('任务失败')
    elif async.status == 'PENDING':
        print('任务等待中被执行')
    elif async.status == 'RETRY':
        print('任务异常后正在重试')
    elif async.status == 'STARTED':
        print('任务已经开始被执行')

执行延时任务

执行延时任务

  • add_task.py
from celery_task.task01 import add
from celery_task.task02 import mul

# 非延迟任务
ret = add.delay(1,2)
print(ret)
ret = mul.delay(10,10)
print(ret)


# 将任务做成延迟任务
from datetime import datetime,timedelta
# 延迟时间必须是utc时间,timedelta是根据utc时间向后延迟
eta = datetime.utcnow() + timedelta(seconds=10)
ret = add.apply_async(args=(200,50),eta=eta)
print(ret)

执行定时任务

执行定时任务时,任务的配置需要写在celery.py中,就是worker,因为定时任务的配置需要在worker开启之前加载,否则无法执行定时任务。

执行定时任务除了需要woker以外,还需要一位‘工人’定时为worker送任务,这个工人就是beat

执行定时任务的时候,需要启动worker及beat,一个负责执行任务,一个负责定时运送任务

启动worker,启动beat -celery worker -A celery_task -l info -P eventlet -celery beat -A celery_task -l info

  • celery.py
from celery import Celery


broker='redis://127.0.0.1:6379/1'  # broker任务队列
backend='redis://127.0.0.1:6379/2' # 结果存储
app=Celery(__name__,broker=broker,backend=backend,include=['celery_task.task01','celery_task.task02'])


# 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False
# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
    'add-task': {
        # 需要定时执行的任务
        'task': 'celery_task.task01.add',
        'schedule': timedelta(seconds=3),
        # 'schedule': crontab(hour=8, day_of_week=1),  # 每周一早八点
        # 任务需要的参数
        'args': (300, 150),
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值