割点浅谈

题目:洛谷P3388模板割点

割点的定义:

一个无向连接图中,如果删除某个顶点后,图不再连同(即任意两点之间不能互相到达) ,称这样的顶点为割点

或:某个点是割点当且仅当删除该点和与该点相关联的边后图变得不连通。

一个顶点是割点,满足下列条件之一:
1).u是树根,u有两个或两个以上的分支/u有多于一个子树;
2).u不是树根,且满足存在(u,v)为树枝边(或称父子边,即u为v在搜索树中的父亲),(u,v)是树边且low[v]>=dfn[u]。

low(u)=min{dfn(u),low(v) if(u,v)是树枝边/父子边,dfn(v) if(u,v)是后向边/返祖边}(low,dfn的定义见代码)

有一个比较难理解的问题,我摘取了一段个人认为比较好的文段

(以下摘自ZTY的洛谷博客)

if(边 u -> v 是树边(父子边))
    low[u] = min( low[u], low[v] );
else
    low[u] = min( low[u], dfn[v] );

关键在于:为什么回边的情况下,为什么不是low[u] = min( low[u], low[v] );,而是low[u] = min( low[u], dfn[v] );

其实,你只要记住这组数据就行:

5 6

1 2

2 3

3 4

4 5

1 3

3 5

画成图就是这样的:

Tarjan割点

我们模拟两种Tarjan算法,一种是low[u] = min( low[u], low[v] );,一种是low[u] = min( low[u], dfn[v] );

第1种:

① dfs(1),dfn[1] = 1,low[1] = 1。

② dfs(2),dfn[2] = 2,low[2] = 2。

③ dfs(3),dfn[3] = 3,low[3] = 3。

④ 发现回边 3 -> 1,low[3] = 1。

⑤ dfs(4),dfn[4] = 4,low[4] = 4。

⑥ dfs(5),dfn[5] = 5,low[5] = 5。

⑦ 发现回边 5 -> 3,low[5] = 1

⑧ dfs(5)结束,回到dfs(4),low[4] = 1。

⑨ dfs(4)结束,回到dfs(3),low[3] = 1。

⑩ dfs(3)结束,至此未发现割点

第2种:

① dfs(1),dfn[1] = 1,low[1] = 1。

② dfs(2),dfn[2] = 2,low[2] = 2。

③ dfs(3),dfn[3] = 3,low[3] = 3。

④ 发现回边 3 -> 1,low[3] = 1。

⑤ dfs(4),dfn[4] = 4,low[4] = 4。

⑥ dfs(5),dfn[5] = 5,low[5] = 5。

⑦ 发现回边 5 -> 3,low[5] = 3

⑧ dfs(5)结束,回到dfs(4),low[4] = 3。

⑨ dfs(4)结束,回到dfs(3),low[4] >= dfn[3],发现割点3,low[3] = 1。

而这个图中,正确答案是:3割点。

(以上摘自ZTY大佬的blog

code:
#pragma comment(linker, "/STACK:102300000,102300000") 

#include<bits/stdc++.h>
#define mst(a,b) memset(a,b,sizeof(a))
#define For(i, j, k) for(int i=(j);i<=(k);i++)
#define INF (2147483647>>1)
using namespace std;
inline int read()
{
    int num=0;
    char c=' ';
    bool flag=1;
    for(;c>'9'||c<'0';c=getchar()) if(c=='-') flag=0;
    for(;c>='0'&&c<='9';num=(num<<1)+(num<<3)+c-48,c=getchar());
    return flag?num:-num;
}
#define N 100001
#define M 200001
struct Edge {
	int nxt, to;
}e[M]; 
int lst[N], tot = 0;
int ind = 0;//当前时间戳 
bool cut[N];
int dfn[N];//dfn[i]表示 点i的时间戳
int low[N];//low[i]表示 从i出发能到节点中,dfn值最小的节点 
#undef M//习惯性将N, M undef掉,省的后边有同名变量出锅 
inline void addedge(int x, int y) {
	tot++;
	e[tot].to = y;
	e[tot].nxt = lst[x];
	lst[x] = tot;
	//以上都是废话,邻接表不解释 
}
void tarjan(int u, int fa) {
	int child = 0;
	dfn[u] = low[u] = ++ind;//打时间戳,自己能搜到的最早的时间是他自己 
	for(int i = lst[u]; i; i = e[i].nxt) {//遍历每一条出边 
		int v = e[i].to;//先把点的编号挖出来  
		if(!dfn[v]) {
			tarjan(v, u);
			low[u] = min(low[u], low[v]);//把边连上去,更新 
			if(low[v] >= dfn[u] && u != fa) {//非根且子树能达到的dfn最小的结点的时间>=自己的时间时,说明他的子树中最早能访问到的结点都比他后访问,只要不为根就一定是割点(注意根例外)
				cut[u] = 1;
			}
			if(fa == u) {
				child++;
			}
		}
		low[u] = min(low[u], dfn[v]);//把边连上去,更新 
	}
	if(u == fa && child >= 2) {//入度>=2且为根的结点,因为一棵树的根一删不管有几棵子树肯定都不连通了
		cut[u] = 1;
	}
}
int main()
{
	int n = read(), m = read();
	For(i, 1, m) {
		int x = read(), y = read();
		addedge(x, y);//加边 
		addedge(y, x);//加边 
	}
	For(i, 1, n) {
		if(!dfn[i]) tarjan(i, i);
	}
	int ans = 0;
	For(i, 1, n) {
		if(cut[i]) ans++;
	}
	printf("%d\n", ans);
	For(i, 1, n) {
		if(cut[i]) {
			printf("%d ", i);
		}
	} 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值