图论学习--3 图的连通度(思维导图)割点 割边 块 连通度 连通度的性质

在这里插入图片描述

图的连通度

割边,割点,块

割边

  • 图G删除e之后,连通分支变多
  • 若G连通,删去割边之后,G不连通
  • 定理1:e是G的割边当且仅当e不在G的任何圈中

    • 由此可推论:e是连通图G的某圈中,则G-e仍然连通
    • 必要性:反证,假设e在圈中,对于G-e,任意取两个点x,y。对于G,因为连通,所以存在x,y的路P,1)P不含e,则P也是G-e中一条路2)P含e,因为e在圈中,则C-e是可以和P组成一条心的路。综上,不管怎样,G-e都连通,这和e是割边矛盾,故e不在圈中
    • 充分性:显然啦,若e不是割边,则G-e连通,从而G-e存在一条路P,则G-e+e=G中则存在P+e这个圈,与e不在圈中矛盾,故得证
  • ω(G-e)>ω(G)

割点

  • E可以划分成两个非空子集E1和E2,使得G[E1]和G[E2]只有一个公共顶点v,v即为割点。
  • ω(G-v)>ω(G)
  • 定理2:设v是树的顶点,则v是G的割点当且仅当d(v)>1

    • 即,割点不可能是树的叶子
  • 定理3:设v是无环连通图G的一个顶点,则v是G的割点当且仅当V(G-v)可划分成为两个非空顶点子集V1和V2,x∈V1,y∈V2,点v都在每一条(x,y)路上。

    • 即,v是点集V1到V2的必经之路,就是社交网络中的Betweeness值。
    • 必要性:依然反证,如果有路不经过v,则V1,V2连通,矛盾
    • 充分性:所有(x,y)路都含有v,则删掉v后x,y没路了,所以V1,V2不连通,所以得证
  • 推论:无环非平凡连通图至少有两个非割点

    • 证明:由于无环非平凡连通图,所以存在非平凡生成树T,而非平凡树至少有两片树叶,因为定理2,割点不可能是树叶,所以T至少有两个非割点,所以G至少有两个非割点

      • 这里是有个小概念,或者是一个显而易见的道理,即原图的割点情况不可能比生成子图更差

  • 概念

    • 没有割点的连通图
    • 图G的子图B是块,且G中没有真包含B的子图也是块,则称B是G的块。

      • 即:B是块,且不能再加任何一个点了,极大了,才能称B是G的块
    • 三个小性质

      • 若e是图G的割边或e是一个环,则G[{e}]是G的块
      • G的仅含一个点的块,或是孤立点,或是环导出的子图
      • 至少两个点的块无环,至少三个点的块无割边

        • 一个点的块可能是环,也可能是孤立点
        • 两个点的块是割边,即K2
    • 定理4:设图G的阶至少为3,则G是块当且仅当G无环且任意两点都位于同一个圈上

      • 充分性:按照割点的定义,显然
      • 必要性:数学归纳法,任意两点d(u,v),为1时,显然成立,为k-1时假设成立,为k时,选取路uv中v的前一点w,然后由于是块,删除w,还联通,则还有另外一条不经过w的路Q连接uv,此时就会构成一个新的圈,所以uv在圈上。

        • 由这个图基本就可以很清晰的理解了
        • 两种情况,一种是v在u和w的圈C中(假设条件),另一种是v和u在新的圈C‘中,证明C’存在
      • 这个的理解可以通过上面的三个小性质来理解,就很方便了

      • 推论:设G的阶至少为3,则G是块当且仅当G无孤立点且任意两条边都在同一个圈上

        • 边在同一个圈->点在同一个圈
        • 任取两条边,中间各插入一个点,它们在一个圈上,从而这两条边也在同一个圈上
    • 定理5:点v是图G的割点当且仅当v至少属于G的两个不同的块

      • 不同块的公共点一定是割点
      • 图的块可以按割点来寻找

        • 然后割边是一个块
    • 块割点树

      • 将块抽象为一个顶点
      • 割点保存
      • 连线志在块割点之间进行
      • 还是得根据割点来操作

连通度

顶点割

  • V’是V(G)的顶点子集

    • G-V'不连通,则V'是G的顶点割
    • 含有k个顶点的顶点割是G的k-顶点割
    • G中点数最少的顶点割称为最小点割
  • 顶点割将割点的定义扩大到了顶点子集

  • 说明

    • v是G的割点,当且仅当{v}是G的1-顶点割
    • 完全图没有顶点割
    • 实际上也只有以完全图为生成子图的图没有顶点割

连通度

  • 概念

    • 若G存在顶点割,则G的最小点割中的点数为G的连通度
    • 如果没有顶点割,则n-1为连通度,即完全图的连通度为n-1
    • 非连通图的连通度κ=0

      • 删0个点就能连通
    • 连通度可以描述为“删去图中k个点,使图不连通或称为单点图的最小k值”

    • 连通度也可以描述为“删去k-1个点,图还连通”
    • 连通图的符号记为κ(G)
    • 若一个图的连通度至少为k,(κ(G)≥k这个好理解),则称该图是k连通的

      • 连通度为3时,则图是1连通,2连通,3连通的,小于k都是连通的。κ≥3能够推出κ≥2
    • 非平凡连通图都是1连通的,当图是2连通的当且仅当G连通、无割点且至少含有3个点

    • 对连通度,可以理解为连通强度,删多少个点才不连通的能力,所以对于k连通,若k≥1时,则该图一定k-1连通

边割

  • G-E‘不连通的G的边自己E'为G的边割
  • 含有k条边的边割称为k边割
  • 边数最少的边割称为最小边割
  • 引申出 边连通度 的概念,这个和连通度差不多,记为λ(G)
  • 若一个图的边连通度至少为k,则是k边连通的
  • 非平凡连通图均是1边连通的,图G是2边连通的当且仅当G连通、五个变且至少含有两个点
  • 边割和点割不一样,边割一定存在,即把度最小的点的所有边都删了,该点就孤立成块了

连通度的性质

性质1:对于G中任意的点x,有κ(G)-1≤κ(G-x)

  • 证明:情况1:,G-x的点割存在,设Vx是G-x的最小点割,则,{x}∪Vx是G的一个点割。κ(G)≤|{x}∪Vx|=κ(G-x)+1。情况2:,G-x的点割不存在,κ(G-x)=(n-1)-1=n-2,对于G而言,κ(G)≤n-1=(n-2)+1=κ(G-x)+1

性质2:λ(G)-1≤λ(G-e)≤λ(G)

  • 证明:设Ee是G-e的最小边割,则{e}∪Ee是G的一个边割,则λ(G)≤|{e}∪Ee|=λ(G-e)+1 。然后λ(G-e)≤λ(G)是显然的

性质3:κ(G)≤λ(G)≤δ(G)

  • 证明:首先证明右边,对于任意的u∈V(G),由于与u相关联的所有边是G的一个边割集(使一个点变成孤立点(孤立点也是块)),所以λ(G)≤δ(G)成立。
  • 证明:然后证明左边,设M是图G的最小边割,G-M一定不连通,恰有两个连通分支,(1),若存在u∈V(G1),v∈V(G2),且u,v不邻接,下面构造点割U,不删u,v。构造规则为,任意e∈M,若u与e关联,则删e在G2中的端点,v同理,从而构造出了点割。则U是G的点割,因为G-U中,不含(u,v)路,故而G-U不连通。所以κ(G)≤|U|≤|M|=λ(G)。(2)若u,v邻接,即G1中任一点均与G2中的点邻接。设|V(G1)|=k,则|M|=k(n-k)≥n-1≥κ(G),这不可能,所以这种情况不可能

    - 通过最小边割恰好将图分成两个连通分支,然后通过最小边割来构造点割,证明最小边割数是≥点割的数的,从而点割数≥最小点割数

性质4:设G是具有m条边的n阶连通图,则κ≤int[2m/n]

  • 证明:2m/n其实就是平均度,2m≥nδ,所以int[2m/n]≥δ,有性质3可得,δ≥κ,所以得证
  • 引理1:G是n阶简单图,若δ(G)≥int[n/2],则G必连通

    • 证明:若G不连通,则G至少有两个连通分支,从而必有一个连通分支满足|V(H)|≤int[n/2],从而最大度△≤int[n/2]-1<int[n/2],于是和δ(G)≥int[n/2]矛盾,所以G必连通

性质5:设G是n阶简单图,对正整数k<n,若δ(G)≥(n+k-2)/2,则G是k连通的

  • 可以用来作为k连通的判断
  • 证明:任意删去G中k-1个点,得到图H,则δ(H)≥δ(G)-(k-1)≥(n+k-2)/2 -(k-1)= (n-k)/2。所以δ(H)≥int[(n-k+1)/2],由引理1知H是连通的,所以G是k连通的。

    • 一句话,删去k-1个点任然连通

性质6:若G是n阶简单图,若δ(G)≥int[n/2],则有λ(G)=δ(G)

  • 证明:反证法,若不然,设λ(G)<δ(G),设G的最小边割为M,且|M|=λ(G),设G-M中G1分支中与M相关联的顶点数为P,显然有:P≤λ(G),对G1中顶点数进行估计,2|E(G1)|≥Pδ(G)-λ(G),又因为λ(G)<δ(G),所以,2|E(G1)|≥Pδ(G)-λ(G)>λ(G)(P-1)≥P(p-1)=2|E(Kp)|(Kp是完全图),上式表明|V(G1)|>P,这说明,G1中至少有一个顶点x不与G2中顶点邻接,所以dG1(x)=dG(x)≥δ(G),所以|V(G1)|≥δ(G)+1,同理,|V(G2)|≥δ(G)+1,于是得到δ(G)<int[n/2],则与条件矛盾,所以反证成立。

    • 反证,通过该条件得出G1中有点不与G2相连
  • 可以看做是引理1的扩充

敏格尔定理

  • 基础概念:如果图G中两条(x,y)路仅xy是公共点,则称这两条路内部不相交或独立的。
  • 基础概念:设x与y是图G中两个不同点,称一组点(或 边)分离x与y,是指G中删去这组点(边)后不再有(x,y)路。
  • 敏格尔定理:(1)设x和y是图G中的两个不相邻点,则G中分离x和y的最少点数=独立的(x,y)路的最大数目。(2)设x,y是图G中的两个不同点,则G中分离x和y的最少边数=边不重的(x,y)路的最大数目。
  • 推论1:对k≥2,图G是k连通的当且仅当G中任意两个不同顶点间均存在k条独立路

    • 证明:(必要性)设G是k连通图,有k连通的定义,G中分离任意一对顶点至少需要 k个点。从而,对G中任意两个顶点x和y,若x,y不相邻,根据敏格尔定理,G中存在k条独立路;若x,y相邻,则删去x与y的边之后所得图G‘的连通度至少为k-1,从而G'中分离x与y至少需要k-1个点。因为κ(G-e)≥κ(G)-1,所以G至少k连通

      • 需要新证明一个κ(G-e)≥κ(G)-1

        • 这个很好证明,因为κ(G-x)≥κ(G)-1,而对于连通图,删去一个点,必定至少删去一条边,所以G-x是G-e的子图,所以子图的连通度肯定小于等于原图,故κ(G-e)≥κ(G-x)≥κ(G)-1,得证
    • 证明:(充分性)假设G中任意两个顶点间至少存在k条独立路,设U是G的最小点割,即|U|=κ(G)。令x与y是G-U的处于不同分支的两个点。所以U是x与y的分离解,由敏格尔定理:κ(G)=|U|≥k,则G是k连通的

  • 推论2:设G是阶至少为3的图,则以下三个命题等价。(1)G是2连通的(2)G中任意两点都在同一个圈上(3)G无孤立点且任意两条边都在同一个圈上

    • (1)到(2)可由推论1得证,两条路,起点终点一样,可不就是圈儿嘛
    • (2)到(3)的证明是在任意两条边上添加两点

      • 和前面的证明方法一样
  • 12
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《离散数学》课程是信息与计算科学专业的专业基础课程,也是应用性很强的一门数学课。离散数学是现代数学的一个重要分支,它是以数理逻辑、集合论、关系与函数、代数结构与布尔代数为讲授对象。是理论性较强、应用性较广、集理论性与应用性为一体的学科。 设置本课程的目的是:通过本课程的学习,使学生了解和掌握关于离散数学的基本概念及其相关理论,以现代数学的方法,初步掌握处理离散结构所必须的一些基本数学工具和方法,为后继课程的学习作必要的理论准备。同时也要培养学生抽象思维、逻辑推理,符号演算和慎密概括的能力,从而使学生具有良好的专业理论素质,提高学生分析和解决实际问题的能力。 学习本课程的要求是:(1) 学习数理逻辑最基本的内容,掌握命题逻辑及谓词逻辑的基本概念,掌握命题演算的方法,掌握命题推理及谓词推理的基本理论,并会用推理理论进行逻辑论证。(2) 学习集合论的基本概念及性质,掌握集合运算及证明的基本理论和方法;学习二元关系的概念与性质,掌握等价关系和偏序关系,并使学生从更高层次理解函数。(3) 学习代数系统的基本知识,掌握二元运算的定义和性质,了解代数系统的子代数和积代数、同态与同构等概念,掌握半群、幺半群、群、环、域和格、布尔代数等代数系统的定义及其性质

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值