【金猿案例展】海尔集团——追光AI-AOI赋能PCBA缺陷检测

海尔集团采用数之联的追光AI-AOI,利用深度学习技术解决PCBA检测中操作复杂、误判高的问题。该设备将调试时间从1-2小时缩短到30分钟内,检出率提升至99.95%,误判率降至0.3%,显著提高生产效率和产品质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


0fc815edd4259e9de24702a36f14daed.png

68ec3a00557fba5069295f606849c596.jpeg

数之联案例

本项目案例由数之联投递并参与“数据猿年度金猿策划活动——《2022大数据产业年度创新服务企业》榜单/奖项”评选。

652a3c5f1f2f93184bce9f09f740e87b.png




‍数据智能产业创新服务媒体

——聚焦数智 · 改变商业


AOI(Automated Optical Inspection缩写)的中文全称是自动光学检测。通过高速高分辨率的工业成像模块,搭载高稳定高精度的机械结构,对待检物进行稳定成像。依托智能检测算法,对待检物的错、漏、反、虚焊等缺陷进行有效检出。使用AOI可对生产过程中的缺陷进行有效发现,提升工艺品质,为工厂降本增效。

随着科技的发展,工厂对工艺的要求越来越高,更先进的制程不断出现,AOI已经由“选配”转变为“标配”。目前行业/企业使用的传统型AOI普遍存在的以下两个核心痛点:

1、操作复杂、调试时间长。波峰焊的焊点形态变化大,传统算法需针对每一类焊点进行调试,大大增加了调试时间。同时,还对人员的熟练程度有要求,一旦人员流动,难以延续设备检测效果,从而影响生产效率。

2、误判高。传统算法难以兼容焊点的多形态特征,误判比较高,大大增加了操作员复判的工作量。过多的误判,操作员容易疲劳,漏检的风险随之增加。

实施时间:

项目开始时间:2022年6月

项目完结时间:2022年10月

应用场景

PCBA可以说是所有电子产品组件中最为重要的组成。小到生活中常用的家电、3C数码、显示器、鼠标键盘、U盘等产品,大到网络通讯、汽车电子、军工研究等,都少不了PCBA的运用。PCBA就类似于人体的大脑神经网络,是所有电子产品的核心,几乎决定着产品的功能、性能、可靠性。尤其是在电子产品售后问题中,有80%都是PCBA出现的问题,PCBA质量的重要性不容置疑。

海尔从事智能家电产品与智慧家庭场景解决方案的研发,产品种类、型号众多。随着家电产品朝着精细化、智能化、微小化趋势发展,该家电企业的PCBA生产检测难度也越来越大。想要保障PCBA的质量,检测手段需要进一步升级。

基于工业机器视觉的表面缺陷装备,已经在各工业领域广泛替代人工肉眼检测,基于传统机器视觉的缺陷检测,但仍存在一些问题和难点,通过深度学习技术的加持,为客户提供软硬一体的智能机器视

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值