数之联案例
本项目案例由数之联投递并参与“数据猿年度金猿策划活动——《2022大数据产业年度创新服务企业》榜单/奖项”评选。
数据智能产业创新服务媒体
——聚焦数智 · 改变商业
AOI(Automated Optical Inspection缩写)的中文全称是自动光学检测。通过高速高分辨率的工业成像模块,搭载高稳定高精度的机械结构,对待检物进行稳定成像。依托智能检测算法,对待检物的错、漏、反、虚焊等缺陷进行有效检出。使用AOI可对生产过程中的缺陷进行有效发现,提升工艺品质,为工厂降本增效。
随着科技的发展,工厂对工艺的要求越来越高,更先进的制程不断出现,AOI已经由“选配”转变为“标配”。目前行业/企业使用的传统型AOI普遍存在的以下两个核心痛点:
1、操作复杂、调试时间长。波峰焊的焊点形态变化大,传统算法需针对每一类焊点进行调试,大大增加了调试时间。同时,还对人员的熟练程度有要求,一旦人员流动,难以延续设备检测效果,从而影响生产效率。
2、误判高。传统算法难以兼容焊点的多形态特征,误判比较高,大大增加了操作员复判的工作量。过多的误判,操作员容易疲劳,漏检的风险随之增加。
实施时间:
项目开始时间:2022年6月
项目完结时间:2022年10月
应用场景
PCBA可以说是所有电子产品组件中最为重要的组成。小到生活中常用的家电、3C数码、显示器、鼠标键盘、U盘等产品,大到网络通讯、汽车电子、军工研究等,都少不了PCBA的运用。PCBA就类似于人体的大脑神经网络,是所有电子产品的核心,几乎决定着产品的功能、性能、可靠性。尤其是在电子产品售后问题中,有80%都是PCBA出现的问题,PCBA质量的重要性不容置疑。
海尔从事智能家电产品与智慧家庭场景解决方案的研发,产品种类、型号众多。随着家电产品朝着精细化、智能化、微小化趋势发展,该家电企业的PCBA生产检测难度也越来越大。想要保障PCBA的质量,检测手段需要进一步升级。
基于工业机器视觉的表面缺陷装备,已经在各工业领域广泛替代人工肉眼检测,基于传统机器视觉的缺陷检测,但仍存在一些问题和难点,通过深度学习技术的加持,为客户提供软硬一体的智能机器视