- 博客(15)
- 收藏
- 关注

原创 AI大模型金融行业应用场景
当前,大智慧销售,智能问答和智能办公是现阶段金融行业最热门的,也是应用成熟度最高的AI大模型应用场景。🔑 训练数据生成:保护客户隐私,同时提供逼真的训练数据,让模型更精准!💻 代码生成与补全:提升开发效率,优化团队结构,让金融科技更进一步!📚 智能培训:个性化培训课程,提升专业技能,让人才更出色!#金融科技 #AI大模型 #智能金融 #大模型金融#大模型。💼 财富管理:投资建议,智能顾问,让理财更专业,更省心!🔍 合规筛查:降低风险,保障业务合规,让监管更智能!🚀 AI大模型金融行业应用场景 🌟。
2024-09-10 17:53:18
260
1
原创 人工智能算法进展研究报告要点(图文版)
替代架构:如Mamba(次二次复杂度)、KAN(Kolmogorov-Arnold网络)等,较传统Transformer更高效。合成数据生成:通过生成高质量合成数据(如Google DeepMind的几何证明数据集)解决训练数据不足问题。算法改进的定义:在相同任务中,通过减少计算资源(如训练数据量、浮点运算次数)或提升性能指标实现效率提升。改进维度:分为“集约型”(效率提升)与“扩展型”(新能力开发),本报告聚焦训练阶段的集约型改进。
2025-04-29 18:49:41
425
原创 DeepSeek+DeepResearch 科研人员的大模型
在商业研究中,可分析市场趋势、竞争对手,支持企业决策。此外,DeepSeek R1 还可应用于医疗、教育、法律、工业等领域,如医疗辅助诊断、教育辅助、法律文书处理、工业质检智能化等。DeepSeek 技术创新:DeepSeek R1 采用强化学习驱动,提升推理能力,支持长思维链,能自我修正,在数学、编程等任务上表现出色。DeepResearch 研究能力:具备多步骤自主研究、端到端强化学习和深度信息整合功能,可处理复杂任务,支持多格式数据输入输出,在学术研究、金融分析等领域有广泛应用。
2025-02-22 00:03:28
489
原创 Inter和AMD,选择什么CPU呢?
每个基准测试进行三次运行取平均值计算性能提升比,提升比即测试系与参考系性能的比值,测试系统配置见图。第 4 代和第 5 代 64 核 AMD EPYC 处理器在双路配置下运行 CP2K H2O - dft - ls - NREP6 基准测试时,相较于英特尔顶级的第 5 代 Xeon Platinum 8592 + 处理器,性能有所提升,如 2P 4 代 AMD EPYC 9554 系统提升约 1.20 倍,2P 5 代 AMD EPYC 9575F 处理器提升约 1.64 倍。
2024-12-29 23:31:37
1072
原创 2024全球人工智能实力排名.Stanford
在该指数中,我们希望通过严格的工具来弥补这一差距,帮助政策制定者、商界领袖和公众将这些地缘政治的人工智能叙述建立在事实的基础上。在该指数中,我们希望通过严格的工具来弥补这一差距,帮助政策制定者、商界领袖和公众将这些地缘政治的人工智能叙述建立在事实的基础上。全球人工智能活力工具根据研究与开发、负责任的人工智能、经济、教育、多样性、政策与治理、公众舆论和基础设施这8个支柱来衡量人工智能生态系统的实力,其指标包括人工智能期刊出版物、人工智能私人投资总额、通过的人工智能立法和基础模型数据集。
2024-11-26 12:34:12
1176
1
原创 Ansys Fluent流体仿真计算分析、硬件配置分析
它具有丰富的物理模型、先进的数值计算方法和强大的前后处理功能,在航空航天、汽车设计、石油、天然气、涡轮机设计等方面都有着广泛的应用。例如,在航空航天、汽车、化工、能源、工业上的应用就包括燃烧、井下分析、喷射控制、环境分析、油气消散与聚积、多相流、管道流动等。机械工程:模拟机械系统中的热传导、流体动力学、换热和气动噪声等问题。其他领域:还应用于水轮机、风机水泵、建筑工程、船舶设计、食品加工和天然资源开发等多个行业。生物医药:模拟生物流体的运动、传热和传质过程,用于研究血液流动、药物输送等生物医学问题。
2024-11-19 11:53:35
3580
原创 NVIDIA发布企业级硬件 AI 参考架构
新发布的参考架构 (RA) 产品适用于部署范围为 32 到 1024 个 GPU 的企业级硬件,源自现有的 Nvidia Cloud Partner (NCP) 设计,该设计专注于 128 个节点到超过 16000 个节点的部署。🔮这些技术中的每一项都有一个现有的节点级认证计划,该计划允许合作伙伴供应商提供针对其客户希望开发的服务进行优化的系统。📍使用 RA 的供应商可以从 Nvidia 使用其硬件和软件解决方案的经验中受益,而选择部署认证解决方案的客户则可以确保在快速有效部署的道路上遇到最少的障碍。
2024-11-17 01:59:46
1175
原创 芯片设计、关键计算用什么服务器配置呢?
对于初创公司来说,一个50人左右的团队可能是一个较为合理的起点,因为它可以提供足够的专业分工,同时保持团队的灵活性和成本效益。芯片设计初创公司中,团队规模的扩展允许承担更复杂的设计任务,并进行更高效的研发。全栈SoC设计:包括CPU、GPU、NPU(神经网络处理器)等子系统设计,适用于移动、IoT或嵌入式领域。物理设计和布局布线:物理设计的并行计算需求大,尤其在大规模SoC设计中需要高性能的多核系统。验证和DFT(可测试性设计):包括形式验证、覆盖率驱动验证、制造测试和良率分析。
2024-11-08 14:17:53
959
原创 大模型训练算力即将遇到物理瓶颈?
以一个典型的120层模型为例,考虑到每层需要的矩阵乘法,以及前向和反向传播,仅仅是等待通信的时间就需要4×120×9微秒。***1、从2010年到2024年,AI训练所需的算力呈现惊人的增长速度,每年增长4-5倍,远远超出摩尔定律的预期。这种增长速度令人瞩目:最初的Transformer模型在2017年只需要8个GPU训练12小时,而到了2024年,Llama 3.1 405B的训练需要动用16000个GPU,持续整整两个月。3、研究发现了两个关键的物理瓶颈,它们就像两堵墙,挡在了AI发展的道路上。
2024-11-04 14:05:37
435
原创 【国内外大模型对比】
其次,在这一领域,OpenAI 和Google 显然占据先发优势和市场主导地位,它们不仅推动了文本大型语言模型的发展,而且逐渐形成了家族式的大型模型集群。最后,除了文本模型之外,代码预训练模型也成为一个新的研究热点,这些模型在代码相关任务上已经展示了出色的性能。大语言模型技术的快速发展,大语言模型已成为各大互联网公司制造影响力的重要工具。图中主要是从大模型文本预训练模型和大模型代码预训练模型的对比。从参数量、输入长度限制、访问方式以及模型微调方式等多个方面对比了目前较为知名的文本大规模预训练语言模型。
2024-09-10 12:13:34
1478
原创 智算中心领跑绿色算力革命
智算中心的发展:行动计划:介绍《算力基础设施高质量发展行动计划》和《东数西算》工程,展示中国对智算中心的全面布局。电力需求的增长:用电量预测:到2030年,智算中心将占全社会用电量的5%-10%,凸显其作为重点用能行业的地位。- GPU算力服务器:介绍推理友好的ASIC芯片的液冷服务器规模部署,以及对提高能效的贡献。技术迭代与可持续发展:设备折旧与更新:讨论数据中心设备的折旧周期,以及更新至更高能效液冷智算中心的长远规划。智算中心的崛起不仅是技术的胜利,更是绿色能源革命的里程碑。
2024-09-05 12:11:59
498
原创 智算数据中心解决方案
该技术面向高功率密度人工智能(AI)计算服务器,由室外冷源系统、冷量分配单元(CDU)、环状管网、微负压冷却工质供回歧管、液冷板、监控模块、配电模块等组成,可满足高功率密度机柜散热需求,提高空间利用率。该项目 88 个 30 千瓦高功率密度液冷机柜年可节约电量 312万千瓦时,折合年节约标准煤 967.2 吨,减少二氧化碳排放 2572.8吨,投资额为 480 万元,投资回收期为 3 年。采用智算中心(AIDC)高密度复合液冷却系统为该机房提供液冷部分冷量,风冷部分负荷由间接蒸发冷却空调系统进行处理。
2024-08-20 17:30:07
430
转载 MinIO发布DataPod存储架构,100PB的E级存储
在你的行业里,数据存储和安全性的重要性如何?MinIO发布DataPod存储架构,100PB的E级存储MinIO最新推出的DataPod参考架构,以100PB的增量达到E级(Exascale,即百亿亿次级)存储规模,使用标准化的现成基础设施。DataPod是MinIO提出的一种创新存储架构,它能帮助企业以100PB的增量轻松达到E级存储规模,全部基于标准化的现成硬件。💰 成本效益分析:根据MinIO的白皮书,自建DataPod的成本远低于云存储方案,每月每TB的成本仅为1.50美元硬件加3.54美元软件。
2024-08-12 08:16:39
122
原创 ISC24 HPC 市场报告:探索高性能计算的未来
💥近日,Hyperion Research 发布了最新的 ISC24 市场报告,涵盖了高性能计算(HPC)、人工智能(AI)、量子计算(QC)和云计算等领域。让我们一起来看看这份报告的精彩内容吧!🌟这份报告为我们展示了 HPC 市场的现状和未来发展趋势,让我们对这个领域有了更深入的了解。如果你对 HPC 感兴趣,不妨关注一下这份报告哦!#HPC #高性能计算 #市场报告 #云计算 #人工智能 #量子计算。ISC24 HPC 市场报告:探索高性能计算的未来。
2024-06-26 18:48:00
769
原创 AMD和Intel发布新品,联手对抗英伟达,数据中心选择什算力解决方案呢?
作为正在建设智算数据中心的IT工程师会选择什么解决方案呢?欢迎留下您的观点,我们一起推动我国算力数据中心的发展。主要探讨AMD和Intel如何通过新产品和技术来对抗英伟达在GPU和数据中心市场的统治地位。
2024-06-07 19:02:48
459
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人