近年来,随着自然语言处理和语音识别技术的迅速发展,中文语音预训练模型在人工智能领域扮演着重要的角色。最近,中文版的 Wav2vec 和 HuBERT 模型问世,为中文语音处理任务带来了新的突破。本文将介绍这两个模型的背景和原理,并提供相应的源代码示例。
- 中文版 Wav2vec
Wav2vec 是一种基于无监督学习的语音表示学习模型,最初由Facebook AI Research(FAIR)团队提出。Wav2vec 通过预测量化的音频信号的局部特征来学习语音表示,从而在没有标注数据的情况下进行自我监督学习。中文版的 Wav2vec 借鉴了原始模型的思想,并针对中文语音数据进行了优化。
以下是使用中文版 Wav2vec 进行语音特征提取的示例代码:
import torch
import torchaudio
from transformers import Wav2Vec2Processor, Wav2Vec2Model
# 加载中文版 Wav2vec