中文语音预训练模型:中文版 Wav2vec 和 HuBERT来了

502 篇文章 ¥59.90 ¥99.00
本文介绍了中文版的Wav2vec和HuBERT模型,这两个模型为中文语音处理带来新进展。Wav2vec通过无监督学习学习语音表示,而HuBERT结合Wav2vec和BERT思想,能同时进行语音表示学习和识别。提供的源代码示例展示了如何使用这些模型进行语音特征提取和识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,随着自然语言处理和语音识别技术的迅速发展,中文语音预训练模型在人工智能领域扮演着重要的角色。最近,中文版的 Wav2vec 和 HuBERT 模型问世,为中文语音处理任务带来了新的突破。本文将介绍这两个模型的背景和原理,并提供相应的源代码示例。

  1. 中文版 Wav2vec

Wav2vec 是一种基于无监督学习的语音表示学习模型,最初由Facebook AI Research(FAIR)团队提出。Wav2vec 通过预测量化的音频信号的局部特征来学习语音表示,从而在没有标注数据的情况下进行自我监督学习。中文版的 Wav2vec 借鉴了原始模型的思想,并针对中文语音数据进行了优化。

以下是使用中文版 Wav2vec 进行语音特征提取的示例代码:

import torch
import torchaudio
from transformers import Wav2Vec2Processor, Wav2Vec2Model

# 加载中文版 Wav2vec
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值