算法笔记-数论-约数

因数,也称为约数(英语:Divisor)是一个常见的数学名词,用于描述自然数 a a a 和自然数 b b b 之间存在的整除关系,即 b b b可以被 a a a 整除。这里我们称 b b b a a a 的倍数, a a a b b b 的因数或因子。

试除法求约数

​ 试除法的思路很简单和求质数一样,求一个数 n n n的所有约束,可以枚举从 1 ∼ n 1 \sim n 1n 的所有数,把它记录下来。这里有一个优化,如果 d ∣ n d|n dn 那么 n d ∣ n \frac{n}{d} | n dnn ,所以约束也是成对出现的,只要枚举 n d \frac{n} {d} dn d d d 之中较小的那个即可。只需要使 d < = n d d <= \frac{n} {d} d<=dn 即只需要枚举到 d < = n d <= \sqrt{n} d<=n

【问题描述】

给定 n n n 个正整数 a i a_i ai,对于每个整数 a i a_i ai,请你按照从小到大的顺序输出它的所有约数。

【输入格式】

第一行包含整数 n n n

接下来 i i i 行,每行包含一个整数 a i a_i ai

【输出格式】

输出共 n n n 行,其中第 i i i 行输出第 i i i 个整数 a i a_i ai 的所有约数。

【输入样例】

2

6

8

【输出样例】

1 2 3 6
1 2 4 8

#include<bits/stdc++.h>
using namespace std;

vector<int> div(int n) {
    vector<int> ans;
    
    for (int i = 1; i <= n / i; i ++) {
        if (n % i == 0) {
            ans.push_back(i);
            if (i != n / i) ans.push_back(n / i);  // 注意边界情况,有可能出现 n/i == i的情况导致重复加入数值
        }
    }    
    sort(ans.begin(), ans.end());
    
    return ans;
}


int main()
{
    int n;
    cin >> n;
    while (n --) {
        int x; cin >> x;
        auto ans = div(x);
        for (auto t : ans) cout << t << ' ';
        cout << endl;
    }
    
    
    return 0;
}

约数的个数

自然数 N 的因数个数以 d ( n ) d(n) d(n) 表示。若 N N N 唯一分解为

N = p 1 a 1 × p 2 a 2 × p 3 a 3 × ⋯ × p n a n = ∏ i = 1 n p i k i {\displaystyle N=p_{1}^{a_{1}}\times p_{2}^{a_{2}}\times p_{3}^{a_{3}}\times \cdots \times p_{n}^{a_{n}}=\prod _{i=1}^{n}p_{i}^{k_{i}}} N=p1a1×p2a2×p3a3××pnan=i=1npiki,

d ( N ) = ( a 1 + 1 ) × ( a 2 + 1 ) × ( a 3 + 1 ) × ⋯ × ( a n + 1 ) = ∏ i = 1 n ( a i + 1 ) {\displaystyle d(N)=(a_{1}+1)\times (a_{2}+1)\times (a_{3}+1)\times \cdots \times (a_{n}+1)=\prod _{i=1}^{n}\left(a_{i}+1\right)} d(N)=(a1+1)×(a2+1)×(a3+1)××(an+1)=i=1n(ai+1)

例如 2646 = 2 × 3 3 × 7 2 2646=2\times 3^{3}\times 7^{2} 2646=2×33×72,则其正因数个数 d ( 2646 ) = ( 1 + 1 ) × ( 3 + 1 ) × ( 2 + 1 ) = 24 d(2646)=(1+1)\times (3+1)\times (2+1)=24 d(2646)=(1+1)×(3+1)×(2+1)=24

【问题描述】

给定 n n n 个正整数 a i a_i ai,请你输出这些数的乘积的约数个数,答案对 1 0 9 + 7 10^9 + 7 109+7 取模。

【输入格式】

第一行包含整数 n n n

接下来 i i i 行,每行包含一个整数 a i a_i ai

【输出格式】

输出一个整数,表示所给正整数的乘积的约数个数,答案对 1 0 9 + 7 10^9 + 7 109+7 取模。

【输入样例】

3

2

6

8

【输出样例】

12

#include<bits/stdc++.h>
using namespace std;

const int mod = 1e9 + 7;
typedef long long ll;
map<int, int> p;

int main()
{
    int n, x;
    cin >> n;
    while (n --) {
        cin >> x;
        for (int i = 2; i <= x / i; i ++) {
            if (x % i == 0) {
                while (x % i == 0) x /= i, p[i] ++;
            }
        }
        if (x > 1) p[x] ++;
    }
    
    ll ans = 1;
    for (auto t : p) ans = ans * (t.second + 1) % mod; // define的时候mod不是整型,是double不能取模,const int mod = 1e9 + 7比较保险。
    cout << ans;
    
    return 0;
}

给定任意一个数 n n n,求其约数的个数。上题相当于求 96 96 96 的约数的个数。

约数之和

自然数 N N N 的正因数和,以因数函数 σ ( N ) {\displaystyle \sigma (N)} σ(N)表示。由质因数分解而得。

N N N 唯一分解为 N = p 1 a 1 × p 2 a 2 × p 3 a 3 × ⋯ × p n a n = ∏ i = 1 n p i k i {\displaystyle N=p_{1}^{a_{1}}\times p_{2}^{a_{2}}\times p_{3}^{a_{3}}\times \cdots \times p_{n}^{a_{n}}=\prod _{i=1}^{n}p_{i}^{k_{i}}} N=p1a1×p2a2×p3a3××pnan=i=1npiki, 则 σ ( N ) = ∏ i = 1 n ( ∑ j = 0 a i p i j ) {\displaystyle \sigma (N)=\prod _{i=1}^{n}\left(\sum _{j=0}^{a_{i}}p_{i}^{j}\right)} σ(N)=i=1n(j=0aipij)

再由等比级数求和公式可知,上式亦可写成:

σ ( N ) = p 1 a 1 + 1 − 1 p 1 − 1 × p 2 a 2 + 1 − 1 p 2 − 1 × ⋯ × p n a n + 1 − 1 p n − 1 {\displaystyle {\begin{aligned}\sigma (N)&={\frac {p_{1}^{a_{1}+1}-1}{p_{1}-1}}\times {\frac {p_{2}^{a_{2}+1}-1}{p_{2}-1}}\times \cdots \times {\frac {p_{n}^{a_{n}+1}-1}{p_{n}-1}}&\end{aligned}}} σ(N)=p11p1a1+11×p21p2a2+11××pn1pnan+11

例如 2646 = 2 × 3 3 × 7 2 {\displaystyle 2646=2\times 3^{3}\times 7^{2}} 2646=2×33×72,则其正因数之和

σ ( 2646 ) = ( 1 + 2 ) × ( 1 + 3 + 9 + 27 ) × ( 1 + 7 + 49 ) = 2 2 − 1 2 − 1 × 3 4 − 1 3 − 1 × 7 3 − 1 7 − 1 = 3 × 40 × 57 = 6840 {\displaystyle {\begin{aligned}\sigma (2646)&=(1+2)\times (1+3+9+27)\times (1+7+49)\\&={\frac {2^{2}-1}{2-1}}\times {\frac {3^{4}-1}{3-1}}\times {\frac {7^{3}-1}{7-1}}\\&=3\times 40\times 57\\&=6840\end{aligned}}} σ(2646)=(1+2)×(1+3+9+27)×(1+7+49)=21221×31341×71731=3×40×57=6840

【问题描述】

给定 n n n 个正整数 a i a_i ai,请你输出这些数的乘积的约数之和,答案对 1 0 9 + 7 10^9 + 7 109+7 取模。

【输入格式】

第一行包含整数 n n n

接下来 i i i 行,每行包含一个整数 a i a_i ai

【输出格式】

输出一个整数,表示所给正整数的乘积的约数之和,答案对 1 0 9 + 7 10^9 + 7 109+7 取模。

【输入样例】

3

2

6

8

【输出样例】

252

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int mod = 1e9 + 7;

int main()
{
    int n;
    map<int, int> p;
    cin >> n;
    while (n --) {
        int x; cin >> x;
        for (int i = 2; i <= x / i; i ++) {
            if (x % i == 0) {
                while (x % i == 0) x /= i, p[i] ++;
            }
        }
        if (x > 1) p[x] ++;
    }
    
    ll ans = 1;
    for (auto t : p) {
        int a = t.first, b = t.second;
        ll k = 1;
        while (b --) k = (k * a + 1) % mod;
        ans = ans * k % mod;
    }
    
    cout << ans;
    
    return 0;
}

代码前半部分与之前几乎一样,后半部分很像秦九韶算法,主要是用于计算等比数列和。

例如 1 + 3 + 3 2 + 3 3 1+3+3^2+3^3 1+3+32+33 可以写成 3 ( 3 ( 3 + 1 ) + 1 ) + 1 3(3(3+1)+1)+1 3(3(3+1)+1)+1CPU计算加法比乘法快,可以算的快一点也可以采用快速幂计算等比数列前 n n n项和

最大公约数

求最大公约数一般采用欧几里得算法,欧几里得算法的核心其实是 g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a, b) = gcd(b, a\ mod\ b) gcd(a,b)=gcd(b,a mod b)下面进行证明

  1. a   m o d   b a\ mod \ b a mod b进行变换
    a   m o d   b = a − ⌊ a b ⌋ × b = a − c × b \begin{align*} a\ mod\ b &= a - \left \lfloor \frac{a}{b} \right \rfloor \times b\\ &=a - c\times b \end{align*} a mod b=aba×b=ac×b

  2. 证明对于 a a a b b b的任意公约数 k k k,都是 b b b a   m o d   b a\ mod\ b a mod b公约数
    b b b的公约数,同时也是 a − c × b a-c\times b ac×b 的公约数

  3. 证明对于 b b b a   m o d   b a\ mod\ b a mod b的任意公约数 m m m,都是 a a a b b b的公约数

    即证明 m m m a a a的公约数, m m m可以整除 a   m o d   b a\ mod\ b a mod b,则 m m m可以整除 a − c × b a-c\times b ac×b所以 m m m可以整除 a a a

综上所述,集合 c d ( a , b ) cd(a, b) cd(a,b)等于集合 c d ( b , a   m o d   b ) cd(b, a\ mod\ b) cd(b,a mod b),则 g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a, b) = gcd(b, a\ mod\ b) gcd(a,b)=gcd(b,a mod b),该过程的实现如下

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

顺便一提,最小公倍数的求法 l c m ( a , b ) = a × b g c d ( a , b ) lcm(a, b) = \frac{a\times b} {gcd(a, b)} lcm(a,b)=gcd(a,b)a×b

int lcm(a, b) {
	return a / gcd(a, b) * b; // 不要写成a*b/gcd(a, b)可能会溢出,先除会让数小一些
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值